【題目】若弦AB,CD是⊙O的兩條平行弦,⊙O的半徑為13,AB=10,CD=24,則AB,CD之間的距離為
A.7B.17C.5或12D.7或17
【答案】D
【解析】
過O作OE⊥AB交AB于E點,過O作OF⊥CD交CD于F點,連接OA、OC,由題意可得:OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一條直線上,EF為AB、CD之間的距離,再分別解Rt△OEA、Rt△OFC,即可得OE、OF的長,然后分AB、CD在圓心的同側(cè)和異側(cè)兩種情況求得AB與CD的距離.
解:①當AB、CD在圓心兩側(cè)時;
過O作OE⊥AB交AB于E點,過O作OF⊥CD交CD于F點,連接OA、OC,如圖所示:
∵半徑r=13,弦AB∥CD,且AB=24,CD=10
∴OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一條直線上
∴EF為AB、CD之間的距離
在Rt△OEA中,由勾股定理可得:
OE2=OA2-AE2
∴OE==5
在Rt△OFC中,由勾股定理可得:
OF2=OC2-CF2
∴OF==12
∴EF=OE+OF=17
AB與CD的距離為17;
②當AB、CD在圓心同側(cè)時;
同①可得:OE=5,OF=12;
則AB與CD的距離為:OF-OE=7;
故答案為:17或7.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線與拋物線交于兩點,其中,.該拋物線與軸交于點,與軸交于另一點.
(1)求的值及該拋物線的解析式;
(2)如圖2.若點為線段上的一動點(不與重合).分別以、為斜邊,在直線的同側(cè)作等腰直角△和等腰直角△,連接,試確定△面積最大時點的坐標.
(3)如圖3.連接、,在線段上是否存在點,使得以為頂點的三角形與△相似,若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD交CD的延長線于點E,DA平分∠BDE.
⑴求證:AE是⊙O的切線;
⑵若AE=4cm,CD=6cm,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為( 。
A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32
C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與x軸、y軸分別交于A,B兩點,與反比例函數(shù)y=的圖象分別交于C,D兩點,點C(2,4),點B是線段AC的中點.
(1)求一次函數(shù)y=k1x+b與反比例函數(shù)y=的解析式;
(2)求△COD的面積;
(3)直接寫出當x取什么值時,k1x+b<.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BA=BC=3,將△ABC繞點C逆時針旋轉(zhuǎn)60°得△MNC,連結(jié)BM ,求BM 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點B,D之間的距離為8cm,則線段AB的長為( 。
A.5 cmB.4.8 cmC.4.6 cmD.4 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結(jié)CE,DF,下列說法不正確的是
A. 四邊形CEDF是平行四邊形
B. 當時,四邊形CEDF是矩形
C. 當時,四邊形CEDF是菱形
D. 當時,四邊形CEDF是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若,是一元二次方程的兩個根,且,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com