【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點P在CA的延長線上,∠CAD=45°.
(1)若AB=4,求的長;
(2)若=,AD=AP,求證:PD是⊙O的切線.
【答案】(1);(2)證明見解析.
【解析】
(1)連接OC,OD,由圓周角定理得到∠COD=2∠CAD,∠CAD=45°,可得∠COD=90°,根據(jù)弧長公式計算即可得到結(jié)論;
(2)由已知條件得到∠BOC=∠AOD,由圓周角定理得到∠AOD=45°,根據(jù)等腰三角形的性質(zhì)得到∠ODA=∠OAD=67.5°,利用角和角的關(guān)系,求得ADP=∠CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到結(jié)論.
解:
(1)連接OC,OD,
∵∠COD=2∠CAD,∠CAD=45°,
∴∠COD=90°,
∵AB=4,
∴OC=AB=2,
∴的長=×π×2=π;
(2)∵=,
∴∠BOC=∠AOD,
∵∠COD=90°,
∴∠AOD=45°,
∵OA=OD,
∴∠ODA=∠OAD,
∵∠AOD+∠ODA+∠OAD=180°,
∴∠ODA=67.5°,
∵AD=AP,
∴∠ADP=∠APD,
∵∠CAD=∠ADP+∠APD,∠CAD=45°,
∴∠ADP=∠CAD=22.5°,
∴∠ODP=∠ODA+∠ADP=90°,
∴PD是⊙O的切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不透明的袋子中裝有4個相同的小球,它們除顏色外無其它差別,把它們分別標(biāo)號:1、2、3、4.
(1)隨機(jī)摸出一個小球后,放回并搖勻,再隨機(jī)摸出一個,用列表或畫樹狀圖的方法求出“兩次取的球標(biāo)號相同”的概率;
(2)隨機(jī)摸出兩個小球,直接寫出“兩次取出的球標(biāo)號和為奇數(shù)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ADC中,∠C=90°,∠A=30°.點B是線段AC上一點,且AB=40cm,∠DBC=75°.
(1)求點B到AD的距離;
(2)求線段CD的長(結(jié)果用根號表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等腰直角三角形,,以為邊向外作等邊三角形,,連接交于點,交于點,過點作交于點.下列結(jié)論:①;②;③;④.則正確的結(jié)論是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,對△ABC 進(jìn)行循環(huán)往復(fù)的軸對稱或中心對稱變換,若原來點 A 坐標(biāo)是(a,b),則經(jīng)過第 2012 次變換后所得的 A 點坐標(biāo)是( )
A. (a,b) B. (a,﹣b) C. (﹣a,b) D. (﹣a,﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是半圓O的直徑,點C在半圓O上.
(1)如圖1,若AC=3,∠CAB=30°,求半圓O的半徑;
(2)如圖2,M是的中點,E是直徑AB上一點,AM分別交CE,BC于點F,D. 過點F作FG∥AB交邊BC于點G,若△ACE與△CEB相似,請?zhí)骄恳渣cD為圓心,GB長為半徑的⊙D與直線AC的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與X軸交于點C,其中點A(﹣1,3)和點B(﹣3,n).
(1)填空:m= ,n= .
(2)求一次函數(shù)的解析式和△AOB的面積.
(3)根據(jù)圖象回答:當(dāng)x為何值時,kx+b≥(請直接寫出答案) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點I是△ABC的內(nèi)心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數(shù)為( 。
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com