【題目】如圖,直線與直線交于點A,點A的橫坐標(biāo)為,且直線與x軸交于點B,與y軸交于點D,直線與y軸交于點C.

(1)求點A的坐標(biāo)及直線的函數(shù)表達式;

(2)連接,求的面積.

【答案】(1) ;(2)1.

【解析】

1)將x=-1代入得出縱坐標(biāo),從而得到點A的坐標(biāo);再用待定系數(shù)法求得直線的函數(shù)表達式;

2)連接,先根據(jù)解析式求得B,C,D的坐標(biāo),得出BO,CD的長,然后利用割補法求的面積,.

解:(1)因為點A在直線上,且橫坐標(biāo)為,所以點A的縱坐標(biāo)為,所以點A的坐標(biāo)為.

因為直線過點A,所以將代入,得,解得,所以直線的函數(shù)表達式為.

2)如圖,連接BC,

由直線的函數(shù)表達式,易得點B的坐標(biāo)為,點D的坐標(biāo)為,點C的坐標(biāo)為,所以.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,MN分別在AB、CD上,且AMCN,MNAC交于點O,連接BO.若∠DAC32°,則∠OBC的度數(shù)為(

A.32°B.48°C.58°D.68°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為8cm2 , AP垂直∠B的平分線BPP,則△PBC的面積為(

A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形AOBC中,對角線交于點E,雙曲線y=(k>0)經(jīng)過A、E兩點,若AC : OB = 1:3,梯形AOBC面積為24,則k =( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三個頂點的坐標(biāo)分別是,,

1)直接寫出點、關(guān)于軸對稱的點、、的坐標(biāo);

, ,;

2)在圖中作出關(guān)于軸對稱的圖形

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OA=OB,OC=OD,AD和BC相交于點E,則圖中共有全等三角形的對數(shù)( 。

A. 2對 B. 3對 C. 4對 D. 5對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點,與y軸交于點C(0,).

(1)_____,點A的坐標(biāo)為______,點B的坐標(biāo)為_____;

(2)設(shè)拋物線的頂點為M,求四邊形ABMC的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)y=﹣2x2+4x+m的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C.

(1)m的值及點B的坐標(biāo);

(2)△ABC的面積;

(3)該二次函數(shù)圖象上有一點D(x,y),使SABD=SABC,請求出D點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 內(nèi)接于半OAB 為直徑,弦 AD 平分CAB,DE O 于點 D

1 求證:DEBC

2 ADBC,O 半徑為 2,求CAD 與弧CD圍成區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊答案