(本小題滿分9分)

如圖所示,菱形ABCD的頂點(diǎn)A、B在x軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D在y軸的正半軸上,∠BAD=60°,點(diǎn)A的坐標(biāo)為(-2,0).
⑴求線段AD所在直線的函數(shù)表達(dá)式.
⑵動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按照A→D→C→B→A的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為t秒.求t為何值時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對(duì)角線AC相切?

(1)
(2)t=2
解:⑴∵點(diǎn)A的坐標(biāo)為(-2,0),∠BAD=60°,∠AOD=90°,
∴OD=OA·tan60°=,
∴點(diǎn)D的坐標(biāo)為(0,),  1分
設(shè)直線AD的函數(shù)表達(dá)式為,
,解得
∴直線AD的函數(shù)表達(dá)式為.    3分
⑵∵四邊形ABCD是菱形,
∴∠DCB=∠BAD=60°,
∴∠1=∠2=∠3=∠4=30°,
AD=DC=CB=BA=4,   5分
如圖所示:

①點(diǎn)P在AD上與AC相切時(shí),
AP1=2r=2,
∴t1="2."     6分
②點(diǎn)P在DC上與AC相切時(shí),
CP2=2r=2,
∴AD+DP2=6,
∴t2="6."     7分
③點(diǎn)P在BC上與AC相切時(shí),
CP3=2r=2,
∴AD+DC+CP3=10,
∴t3="10.   " 8分
④點(diǎn)P在AB上與AC相切時(shí),
AP4=2r=2,
∴AD+DC+CB+BP4=14,
∴t4=14,
∴當(dāng)t=2、6、10、14時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對(duì)角線AC相切. 9分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一次函數(shù)的圖象與直線y=-x+1平行,且過(guò)點(diǎn)(8,2),那么此一次函數(shù)的解析式為_(kāi)_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一次函數(shù)的圖像經(jīng)過(guò)點(diǎn)(-2,5),并且與直線=3-4相交于軸上,求此函數(shù)的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知:如圖一次函數(shù)y=x+1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;二次函數(shù)y=x2+bx+c的圖象與一次函數(shù)y=x+1的圖象交于B、C兩點(diǎn),與x軸交于D、E兩點(diǎn)且D點(diǎn)坐標(biāo)為(1,0)

(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點(diǎn)P,使得△PBC是以P為直角頂點(diǎn)的直角三角形?若存在,求出所有的點(diǎn)P,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)
有一種螃蟹,從海上捕獲后不放養(yǎng),最多只能存活兩天.如果放養(yǎng)在塘內(nèi),可以延長(zhǎng)存活時(shí)間,但每天也有一定數(shù)量的蟹死去.假設(shè)放養(yǎng)期內(nèi)蟹的個(gè)體質(zhì)量基本保持不變,現(xiàn)有一經(jīng)銷商,按市場(chǎng)價(jià)收購(gòu)這種活蟹1000 kg放養(yǎng)在塘內(nèi),此時(shí)市場(chǎng)價(jià)為每千克30元,據(jù)測(cè)算,此后每千克活蟹的市場(chǎng)價(jià)每天可上升1元,但是,放養(yǎng)一天需支出各種費(fèi)用為400元,且平均每天還有10 kg蟹死去,假定死蟹均于當(dāng)天全部銷售出,售價(jià)都是每千克20元.
(1)設(shè)x天后每千克活蟹的市場(chǎng)價(jià)為p元,寫(xiě)出p關(guān)于x的函數(shù)關(guān)系式;
(2)如果放養(yǎng)x天后將活蟹一次性出售,并記1000 kg蟹的銷售總額為Q元,寫(xiě)出Q關(guān)于x的函數(shù)關(guān)系式.
(3)該經(jīng)銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤(rùn)(利潤(rùn)=Q-收購(gòu)總額)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,直線與兩坐標(biāo)軸圍成一個(gè)△AOB.現(xiàn)將背面完全相同,正面分別標(biāo)有數(shù)1、2、3、、的5張卡片洗勻后,背面朝上,從中任取一張,將該卡片上的數(shù)作為點(diǎn)P的橫坐標(biāo),將該數(shù)的倒數(shù)作為點(diǎn)P的縱坐標(biāo),則點(diǎn)P落在△AOB內(nèi)的概率為           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若P(-7,3a+2)在直線y=x上,則a=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直線y=2x+4上,且到x軸距離是6的點(diǎn)坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線y=3x-6與x軸的交點(diǎn)坐標(biāo)為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案