【題目】如圖,在正方形ABCD的邊AB上取一點(diǎn)E,連接CE,將BCE沿CE翻折,點(diǎn)B恰好與對(duì)角線AC上的點(diǎn)F重合,連接DF,若BE1,則CDF的面積是_____

【答案】

【解析】

由折疊可得EFBE1,∠CFE=∠B90°,且∠FAE45°可得AF1,AE,即可求對(duì)角線BD的長(zhǎng),則可求△CDF面積

如圖連接BDACO

ABCD為正方形

∴∠ABC90°,ABBC,ACBD,DOBO,∠BAC45°

∵△BCE沿CE翻折,

BEEF1,BCCF,∠EFC90°

∵∠BAC45°,∠EFC90°

∴∠EAF=∠AEF45°

AFEF1

AE

AB+1BCCF

BDAB2+

OD

SCDF×CF×DO

SCDF

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過(guò)點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).

(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;

(2)連接PO,PC,并把POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yx2+bx+c與直線yx交于(1,1)和(3,3)兩點(diǎn),現(xiàn)有以下結(jié)論:b24c0;3b+c+60;當(dāng)x2+bx+c時(shí),x2;當(dāng)1x3時(shí),x2+b1x+c0,其中正確的序號(hào)是( 。

A. ①②④B. ②③④C. ②④D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+ca,bc為常數(shù),且a≠0)中的xy的部分對(duì)應(yīng)值如表:

X

1

0

1

3

y

3

3

下列結(jié)論:

1abc0;

2)當(dāng)x1時(shí),y的值隨x值的增大而減小;

316a+4b+c0;

4)拋物線與坐標(biāo)軸有兩個(gè)交點(diǎn);

5x3是方程ax2+b1x+c0的一個(gè)根;

其中正確的個(gè)數(shù)為( 。

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC內(nèi)接于⊙O,且ABAC,直徑ADBC于點(diǎn)E,FOE上的一點(diǎn),使CFBD

1)求證:BECE

2)若BC8,AD10,求四邊形BFCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)PAD延長(zhǎng)線上一點(diǎn),連接AC、CP,F(xiàn)AB邊上一點(diǎn),滿(mǎn)足CFCP,過(guò)點(diǎn)BBMCF,分別交AC、CF于點(diǎn)M、N

(1)若AC=AP,AC=4,求ACP的面積;

(2)若BC=MC,證明:CP﹣BM=2FN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是數(shù)值轉(zhuǎn)換機(jī)的示意圖,小明按照其對(duì)應(yīng)關(guān)系畫(huà)出了yx的函數(shù)圖象(如圖):

1)分別寫(xiě)出當(dāng)0≤x≤4x4時(shí),yx的函數(shù)關(guān)系式:

2)求出所輸出的y的值中最小一個(gè)數(shù)值;

3)寫(xiě)出當(dāng)x滿(mǎn)足什么范圍時(shí),輸出的y的值滿(mǎn)足3≤y≤6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,直徑ADBC于點(diǎn)E,延長(zhǎng)AD至點(diǎn)F,使DF2OD,連接FC并延長(zhǎng)交過(guò)點(diǎn)A的切線于點(diǎn)G,且滿(mǎn)足AGBC,連接OC,若cosBAC,BC6

1)求證:∠COD=∠BAC

2)求⊙O的半徑OC;

3)求證:CF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自行車(chē)因其便捷環(huán)保深受人們喜愛(ài),成為日常短途代步與健身運(yùn)動(dòng)首選.如圖1是某品牌自行車(chē)的實(shí)物圖,圖2是它的簡(jiǎn)化示意圖.經(jīng)測(cè)量,車(chē)輪的直徑為,中軸軸心到地面的距離,后輪中心與中軸軸心連線與車(chē)架中立管所成夾角,后輪切地面于點(diǎn).為了使得車(chē)座到地面的距離,應(yīng)當(dāng)將車(chē)架中立管的長(zhǎng)設(shè)置為_____________.

(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案