(2007•臺州)把正方形ABCD繞著點A,按順時針方向旋轉得到正方形AEFG,邊FG與BC交于點H(如圖).試問線段HG與線段HB相等嗎?請先觀察猜想,然后再證明你的猜想.

【答案】分析:要證明HG與HB是否相等,可以把線段放在兩個三角形中證明這兩個三角形全等,或放在一個三角形中證明這個三角形是等腰三角形,而圖中沒有這樣的三角形,因此需要作輔助線,構造三角形.
解答:證明:HG=HB,
證法1:連接AH,
∵四邊形ABCD,AEFG都是正方形,
∴∠B=∠G=90°,
由題意知AG=AB,又AH=AH,
∴Rt△AGH≌Rt△ABH(HL),
∴HG=HB.

證法2:連接GB,
∵四邊形ABCD,AEFG都是正方形,
∴∠ABC=∠AGF=90°,
由題意知AB=AG,
∴∠AGB=∠ABG,
∴∠HGB=∠HBG,
∴HG=HB.
點評:解答本題要充分利用正方形的特殊性質(zhì).注意在正方形中的特殊三角形的應用,搞清楚矩形、菱形、正方形中的三角形的三邊關系,可有助于提高解題速度和準確率.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《四邊形》(09)(解析版) 題型:解答題

(2007•臺州)把正方形ABCD繞著點A,按順時針方向旋轉得到正方形AEFG,邊FG與BC交于點H(如圖).試問線段HG與線段HB相等嗎?請先觀察猜想,然后再證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《三角形》(13)(解析版) 題型:解答題

(2007•臺州)把正方形ABCD繞著點A,按順時針方向旋轉得到正方形AEFG,邊FG與BC交于點H(如圖).試問線段HG與線段HB相等嗎?請先觀察猜想,然后再證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江西省撫州市金溪一中中考數(shù)學二模試卷(解析版) 題型:解答題

(2007•臺州)把正方形ABCD繞著點A,按順時針方向旋轉得到正方形AEFG,邊FG與BC交于點H(如圖).試問線段HG與線段HB相等嗎?請先觀察猜想,然后再證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年浙江省臺州市中考數(shù)學試卷(解析版) 題型:填空題

(2007•臺州)(1)善于思考的小迪發(fā)現(xiàn):半徑為a,圓心在原點的圓(如圖1),如果固定直徑AB,把圓內(nèi)的所有與y軸平行的弦都壓縮到原來的倍,就得到一種新的圖形-橢圓(如圖2).她受祖沖之“割圓術”的啟發(fā),采用“化整為零,積零為整”、“化曲為直,以直代曲”的方法,正確地求出了橢圓的面積,她求得的結果為    ;
(2)小迪把圖2的橢圓繞x軸旋轉一周得到一個“雞蛋型”的橢球.已知半徑為a的球的體積為πa3,則此橢球的體積為   

查看答案和解析>>

同步練習冊答案