【題目】先化簡(jiǎn),再求代數(shù)式( )÷ 的值,其中a=2sin60°+tan45°.

【答案】解:原式=[ ](a+1)
= (a+1)
= (a+1)
= (a+1)
= ,
當(dāng)a=2sin60°+tan45°=2× +1= +1時(shí),原式= =
【解析】先算括號(hào)里面的,再算除法,最后把a(bǔ)的值代入進(jìn)行計(jì)算即可.本題考查的是分式的化簡(jiǎn)求值,分式求值題中比較多的題型主要有三種:轉(zhuǎn)化已知條件后整體代入求值;轉(zhuǎn)化所求問(wèn)題后將條件整體代入求值;既要轉(zhuǎn)化條件,也要轉(zhuǎn)化問(wèn)題,然后再代入求值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解特殊角的三角函數(shù)值的相關(guān)知識(shí),掌握分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=BC,PABC內(nèi)一點(diǎn),且PA=3,PB=1,PC= CD=2,CDCP,求∠BPC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.

(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個(gè)條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】油電混動(dòng)汽車是一種節(jié)油、環(huán)保的新技術(shù)汽車.它將行駛過(guò)程中部分原本被浪費(fèi)的能量回收儲(chǔ)存于內(nèi)置的蓄電池中.汽車在低速行駛時(shí),使用蓄電池帶動(dòng)電動(dòng)機(jī)驅(qū)動(dòng)汽車,節(jié)約燃油.某品牌油電混動(dòng)汽車與普通汽車的相關(guān)成本數(shù)據(jù)估算如下:

油電混動(dòng)汽車

普通汽車

購(gòu)買價(jià)格

17.48

15.98

每百公里燃油成本(元)

31

46

某人計(jì)劃購(gòu)入一輛上述品牌的汽車.他估算了未來(lái)10年的用車成本,在只考慮車價(jià)和燃油成本的情況下,發(fā)現(xiàn)選擇油電混動(dòng)汽車的成本不高于選擇普通汽車的成本.則他在估算時(shí),預(yù)計(jì)平均每年行駛的公里數(shù)至少為( 。

A. 5000 B. 10000 C. 15000 D. 20000

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.

(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)中較長(zhǎng)線段與較短線段長(zhǎng)度的差等于PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC內(nèi)接于⊙O,D是 上一點(diǎn),OD⊥BC,垂足為H.

(1)如圖1,當(dāng)圓心O在AB邊上時(shí),求證:AC=2OH;
(2)如圖2,當(dāng)圓心O在△ABC外部時(shí),連接AD、CD,AD與BC交于點(diǎn)P,求證:∠ACD=∠APB;
(3)在(2)的條件下,如圖3,連接BD,E為⊙O上一點(diǎn),連接DE交BC于點(diǎn)Q、交AB于點(diǎn)N,連接OE,BF為⊙O的弦,BF⊥OE于點(diǎn)R交DE于點(diǎn)G,若∠ACD﹣∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC= ,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在四邊形ABCD,ABBC1,CD,DA1,且∠B90°.求:

(1)BAD的度數(shù);

(2)四邊形ABCD的面積(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E,F(xiàn)分別是OA,OC的中點(diǎn),連接BE,DF

(1)根據(jù)題意,補(bǔ)全原形;
(2)求證:BE=DF.

查看答案和解析>>

同步練習(xí)冊(cè)答案