【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD的延長線交于點F,且∠AFB=∠ABC.

(1)求證:直線BF是⊙O的切線.

(2)若CD=2,OP=1,求線段BF的長.

【答案】(1)證明見解析;(2)BF=.

【解析】

(1)欲證明直線BF是⊙O的切線,只要證明AB⊥BF即可.

(2)連接OD,在Rt△ODE中,利用勾股定理求出由△APD∽△ABF,=,由此即可解決問題.

(1)∵∠AFB=∠ABC,∠ABC=∠ADC,∴∠AFB=∠ADC,

∴CD∥BF,∴∠AFD=∠ABF,

∵CD⊥AB,∴AB⊥BF,∴直線BF是⊙O的切線.

(2)連接OD,∵CD⊥AB,∴PD=0.5CD=,

∵OP=1,∴OD=2,∵∠PAD=∠BAF,∠APO=∠ABF,∴△APD∽△ABF,

=,∴=,∴BF=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(a,0),B(b,0),C(b,-2a).且+|b-l|=0.CDAB,ADBC

(1)直接寫出B、C、D各點的坐標:B 、C 、D ;

(2)如圖1,P(3,10),點E,M在四邊形ABCD的邊上,且E在第二象限.若PEM是以PE為直角邊的等腰直角三角形,請直接寫出點E的坐標,并對其中一種情況計算說明;

(3)如圖2,F(xiàn)y軸正半軸上一動點,過F的直線jx軸,BH平分∠FBA交直線j于點H.GBF上的點,且∠HGF=FAB,F(xiàn)在運動中FG的長度是否發(fā)生變化?若變化,求出變化范圍;若不變,求出定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F分別在BCCD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,BCAD,添加下列條件,不能判定四邊形ABCD是平行四邊形的是(  )

A.ABCDB.ABCDC.A=∠CD.BCAD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BABEDCDC的延長線于點E,求證:

1)∠1=BAD;

2BE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】爭創(chuàng)全國文明城市,從我做起,某學校在七年級開設了文明禮儀校本課程,為了解學生的學習情況,學校隨機抽取30名學生進行測試,成績?nèi)缦?/span>(單位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93,整理上面的數(shù)據(jù)得到頻數(shù)分布表和頻數(shù)分布直方圖:

成績()

頻數(shù)

5

11

2

回答下列問題:

(1)以上30個數(shù)據(jù)中,中位數(shù)是_____;頻數(shù)分布表中____;_____;

(2)補全頻數(shù)分布直方圖;

(3)若成績不低于86分為優(yōu)秀,估計該校七年級300名學生中,達到優(yōu)秀等級的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=12,過點A,D兩點的⊙O與BC邊相切于點E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當△ABM是等腰三角形時,M點的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BECD,交于點F

(1)判斷∠ABE與∠ACD的數(shù)量關系,并說明理由;

(2)求證:過點A、F的直線垂直平分線段BC

查看答案和解析>>

同步練習冊答案