【題目】已知:等邊△ABC,點(diǎn)P是直線BC上一點(diǎn),且PC:BC=1:4,則tan∠APB=_______,
【答案】或.
【解析】
過A作AD⊥BC于D,設(shè)等邊△ABC的邊長為4a,則DC=2a,AD=2a,PC=a,分類討論:當(dāng)P在BC的延長線上時(shí),DP=DC+CP=2a+a=3a;當(dāng)P點(diǎn)在線段BC上,即在P′的位置,則DP′=DC-CP′=a,然后分別利用正切的定義求解即可.
解:如圖,過A作AD⊥BC于D,
設(shè)等邊△ABC的邊長為4a,則DC=2a,AD=2a,PC=a,
當(dāng)P在BC的延長線上時(shí),DP=DC+CP=2a+a=3a,
在Rt△ADP中,tan∠APD=;
當(dāng)P點(diǎn)在線段BC上,即在P′的位置,則DP′=DC-CP′=a,
在Rt△ADP′中,tan∠AP′D=.
故答案為:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖(1),連接AF、CE.
①四邊形AFCE是什么特殊四邊形?說明理由;
②求AF的長;
(2)如圖(2),動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過程中,已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,點(diǎn),分別在軸,軸的正半軸上運(yùn)動(dòng),且,下列結(jié)論:
①
②當(dāng)時(shí)四邊形是正方形
③四邊形的面積和周長都是定值
④連接,,則,其中正確的有( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+mx+3與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),拋物線與直線y=-x+3交于C、D兩點(diǎn).連接BD、AD.
(1)求m的值.
(2)拋物線上有一點(diǎn)P,滿足S△ABP=4S△ABD,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開設(shè)的體育選修課有籃球、足球、排球、羽毛球、乒乓球,學(xué)生可以根據(jù)自己的愛好選修其中1門.某班班主任對全班同學(xué)的選課情況進(jìn)行了調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(圖(1)和圖(2)):
(1)請你求出該班的總?cè)藬?shù),并補(bǔ)全條形圖(注:在所補(bǔ)小矩形上方標(biāo)出人數(shù));
(2)在該班團(tuán)支部4人中,有1人選修排球,2人選修羽毛球,1人選修乒乓球.如果該班班主任要從他們4人中任選2人作為學(xué)生會候選人,那么選出的兩人中恰好有1人選修排球、1人選修羽毛球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:內(nèi)接于⊙,連接并延長交于點(diǎn),交⊙于點(diǎn),滿足.
(1)如圖1,求證:;
(2)如圖2,連接,點(diǎn)為弧上一點(diǎn),連接,=,過點(diǎn)作,垂足為點(diǎn),求證:;
(3)如圖3,在(2)的條件下,點(diǎn)為上一點(diǎn),分別連接,,過點(diǎn)作,交⊙于點(diǎn),,,連接,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對角線BD交于點(diǎn)E,連接EC.
(1)求證:AE=CE;
(2)當(dāng)點(diǎn)P在線段BC上時(shí),設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當(dāng)點(diǎn)P在線段BC的延長線上時(shí),若△PEC是直角三角形,請直接寫出BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=x+的圖象與性質(zhì)進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)函數(shù)y=x+的自變量x的取值范圍是_____.
(2)下表列出了y與x的幾組對應(yīng)值,請寫出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,請完成:
①當(dāng)y=﹣時(shí),x=_____.
②寫出該函數(shù)的一條性質(zhì)_____.
③若方程x+=t有兩個(gè)不相等的實(shí)數(shù)根,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長是8,點(diǎn)E是AB邊上一動(dòng)點(diǎn),連接CE,過點(diǎn)B作BG⊥CE于點(diǎn)G,點(diǎn)P是AB邊上另一動(dòng)點(diǎn),則PD+PG的最小值是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com