【題目】如圖:的直徑,是弦,,延長到點,使得.

(1)求證:的切線;

(2),求的長.

【答案】(1)見解析;(2).

【解析】

(1)連接DO,由三角形的外角與內角的關系可得∠DOC=C=45°,故有∠ODC=90°,即CD是圓的切線.
(2)由(1)可得OCD是等腰直角三角形,再根據(jù)勾股定理得出OC的長,再根據(jù)BC=OC﹣OB即可

(1)證明:連接DO,

AO=DO,

∴∠DAO=ADO=22.5°.

∴∠DOC=45°.

又∵∠ACD=2DAB,

∴∠ACD=DOC=45°.

∴∠ODC=90°.

OD是⊙O的半徑,

CD是⊙O的切線.

(2)連接DB,

∵∠ACD=DOC=45°, CD=OD

∵直徑AB=2,

CD=OD=,OC==2,

BC=OC﹣OB=2﹣

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用長為6m的鋁合金條制成字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計).

1)求出yx的函數(shù)關系式;

2)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖像如圖所示,則下列五個結論中:①albic0;②ab+c0;③2ab0;④abc0;⑤4a+2b+c0,錯誤的個數(shù)有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小磊要制作一個三角形的鋼架模型,在這個三角形中,長度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個三角形的面積S(單位:cm2)x(單位:cm)的變化而變化.

1)請直接寫出Sx之間的函數(shù)關系式(不要求寫出自變量x的取值范圍);

2)當x是多少時,這個三角形面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電腦鍵盤上的字母為何不按順序排列?請你來做一項統(tǒng)計,下面是一篇小短文,根據(jù)短文中字母a,b出現(xiàn)的機會完成后面提出的問題:

Two Trips

Jack brought a small plane and began to fly it. He soon became excited and made his plane all kinds of tricks.

Jack had a friend,named Tom. One day Jack said to him,“I will pick you up in my plane.““I will be glad to.'answered Tom. They went up,and Jack flew around for half an hour and did all kinds of tricks in the air. Then they came down. Tom was to be back safely,and said to Jack,“Well,Jack,thank you very much for those two trips in your plane.“Jack was very surprised and asked,“Two trips?““Yes,my first and my last.'an﹣swered Tom.

根據(jù)上文填表

出現(xiàn)字母的個數(shù)

100

150

200

250

300

350

400

出現(xiàn)字母a的頻數(shù)

出現(xiàn)字母a的頻率

出現(xiàn)字母b的頻數(shù)

出現(xiàn)字母b的頻率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A(a,﹣)在直線y=﹣上,ABy軸,且點B的縱坐標為1,雙曲線y經過點B

(1)a的值及雙曲線y的解析式;

(2)經過點B的直線與雙曲線y的另一個交點為點C,且△ABC的面積為

①求直線BC的解析式;

②過點BBDx軸交直線y=﹣于點D,點P是直線BC上的一個動點.若將△BDP以它的一邊為對稱軸進行翻折,翻折前后的兩個三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的一條弦,點C是O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與O交于G、H兩點,若O的半徑為10,則GE+FH的最大值為( 。

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ACBC5,AB8,ABx軸,垂足為A,反比例函數(shù)y(x0)的圖象經過點C,交AB于點D

(1)OAAB,求k的值;

(2)BCBD,連接OC,求△OAC的面積.

查看答案和解析>>

同步練習冊答案