(2000•西城區(qū))已知:拋物線與拋物線在平面直角坐標系xOy中的位置如圖所示,其中一條與x軸交于A、B兩點.
(1)試判定哪條拋物線經(jīng)過A、B兩點,并說明理由;
(2)若A、B兩點到原點的距離AO、OB滿足,求經(jīng)過A、B兩點的這條拋物線的解析式.

【答案】分析:(1)只需令每一條拋物線的解析式等于0,計算每一個方程的判別式△的值,使△>0的即為所求;
(2)如果設點A(x1,0),B(x2,0),則x1、x2是方程x2+mx-=0的兩個實數(shù)根,根據(jù)一元二次方程根與系數(shù)的關系及已知條件,可求出m的值,進而得到拋物線的解析式.
解答:解:(1)∵拋物線不過原點,
∴m≠0.
令x2-mx+=0,
∴△1=(-m)2-4×=-m2<0,與x軸沒有交點.
令x2+mx-=0,
∵△2=m2-4(-)=4m2>0,
∴拋物線y=x2+mx-經(jīng)過A、B兩點;

(2)設點A(x1,0),B(x2,0),
則x1、x2是方程x2+mx-=0的兩個實數(shù)根,
∴x1+x2=-m,x1•x2=-,
∵AO=-x1,OB=x2,
,
,

,
解得m=2,經(jīng)檢驗,m=2是方程的解.
∴所求拋物線的解析式為y=x2+2x-3.
點評:本題主要考查了二次函數(shù)與一元二次方程的聯(lián)系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《反比例函數(shù)》(01)(解析版) 題型:解答題

(2000•西城區(qū))已知:反比例函數(shù)和一次函數(shù)y=mx+n圖象的一個交點為A(-3,4),且一次函數(shù)的圖象與x軸的交點到原點的距離為5,分別確定反比例函數(shù)與一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年北京市西城區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2000•西城區(qū))已知:拋物線與拋物線在平面直角坐標系xOy中的位置如圖所示,其中一條與x軸交于A、B兩點.
(1)試判定哪條拋物線經(jīng)過A、B兩點,并說明理由;
(2)若A、B兩點到原點的距離AO、OB滿足,求經(jīng)過A、B兩點的這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年北京市西城區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2000•西城區(qū))已知:反比例函數(shù)和一次函數(shù)y=mx+n圖象的一個交點為A(-3,4),且一次函數(shù)的圖象與x軸的交點到原點的距離為5,分別確定反比例函數(shù)與一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•西城區(qū))已知:△ABC是⊙O的內(nèi)接三角形,BT為⊙O的切線,B為切點,P為直線AB上一點,過點P做BC的平行線交直線BT于點E,交直線AC于點F.

(1)當點P在線段AB上時(如圖).求證:PA•PB=PE•PF;
(2)當點P為線段BA延長線上一點時,第(1)題的結論還成立嗎?如果成立,請證明;如果不成立,請說明理由;
(3)若,,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案