已知Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中,正確的是


  1. A.
    sinA=數(shù)學公式
  2. B.
    cosA=數(shù)學公式
  3. C.
    tanA=數(shù)學公式
  4. D.
    cotA=數(shù)學公式
D
分析:本題可以利用銳角三角函數(shù)的定義以及勾股定理分別求解,再進行判斷即可.
解答:∵∠C=90°,BC=6,AC=4,
∴AB=2,
A.sinA==,故此選項錯誤;
B.cosA==,故此選項錯誤;
C.tanA==,故此選項錯誤;
D.cotA==,故此選項正確.
故選:D.
點評:此題主要考查了銳角三角函數(shù)的定義以及勾股定理,熟練應用銳角三角函數(shù)的定義是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB邊所在的直線為軸,將△ABC旋轉一周,則所得幾何體的表面積是( 。
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長線于E,BA、CE延長線相交于F點.
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,兩直角邊AC、BC的長是關于x的方程x2-(m+5)x+6m=0的兩個實數(shù)根.求m的值及AC、BC的長(BC>AC).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,已知Rt△ABC中,∠C=90°∠A=36°,以C為圓心,CB為半徑的圓交AB于P,則弧BP的度數(shù)是
72
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知Rt△ABC中,∠ACB=90°,CA=CB,點D在BC的延長線上,點E在AC上,且CD=CE,延長BE交AD于點F,求證:BF⊥AD.

查看答案和解析>>

同步練習冊答案