如圖所示,在直角梯形ABCD中,AD∥BC,∠B=90°,EF是中位線,ED平分∠ADC,下面的結(jié)論:①CE平分∠BCD;②CD=AD+BC;③點E到CD的距離為AB,其中正確結(jié)論的個數(shù)有( )

A.0個
B.1個
C.2個
D.3個
【答案】分析:根據(jù)梯形的性質(zhì)及梯形中位線定理對各個結(jié)論進(jìn)行驗證從而得到最后答案.
解答:解:①正確:∵EF是梯形的中位線
∴EF∥AD∥BC,EF=(AD+BC)
∵EF∥AD
∴∠ADE=∠DEF
∵ED平分∠ADC
∴∠DEF=∠EDF
∴EF=FD
∴EF=FC
∴∠FEC=∠FCE
∵EF∥BC
∴∠FEC=∠BCE
∴∠FCE=∠BCE
即CE平分∠BCD
②正確:由①中的證明得,EF=(AD+BC),EF=FD=FC,∴CD=AD+BC;
③正確:根據(jù)角平分線的性質(zhì)定理,得點E到CD的距離等于AE,即為AB;
所以三個結(jié)論都正確,故選D.
點評:綜合運用了梯形的中位線定理、平行線的性質(zhì)、等腰三角形的性質(zhì)和判定、角平分線的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖所示,在直角梯形ABCD中,AD∥BC,AD=24cm,AB=8cm,BC=26cm,動點P從A點開始沿AD邊向D以1cm/s的速度運動,動點Q從C點開始沿CB邊向B以3cm/s的速度運動.P,Q分別從A,C同時出發(fā),當(dāng)其中一點到端點時,另一點也隨之停止運動,設(shè)運動時間為t(s),t分別為何值時,四邊形PQCD是平行四邊形?等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AD=20,BC=10,則∠A和∠D分別是(  )
A、30°,150°B、45°,135°C、120°,60°D、150°,30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求四邊形CGEF的面積S關(guān)于x的函數(shù)表達(dá)式和x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,AB=2,P是邊AB的中點,∠PDC=90°,問梯形ABCD面積的最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•山西模擬)如圖所示,在直角梯形ABCD中,AB∥CD,點E為AB的中點,點F為BC的中點,AB=4,EF=2,∠B=60°,則AD的長為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案