【題目】“食品安全”受到全社會的廣泛關注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩份尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題.
(1)接受問卷調查的學生共有_____人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_____.
(2)請補全條形統(tǒng)計圖.
(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù).
(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
【答案】(1)60;90°;(2)補圖見解析;(3)300;(4)
【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總人數(shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);(2)用調查的總人數(shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)用總人數(shù)乘以“了解”和“基本了解”程度的人數(shù)所占的比例,即可求出達到“了解”和“基本了解”程度的總人數(shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.
詳解:(1)60;90°.
(2)補全的條形統(tǒng)計圖如圖所示.
(3)對食品安全知識達到“了解”和“基本了解”的學生所占比例為,由樣本估計總體,該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù)為.
(4)列表法如表所示,
男生 | 男生 | 女生 | 女生 | |
男生 | 男生男生 | 男生女生 | 男生女生 | |
男生 | 男生男生 | 男生女生 | 男生女生 | |
女生 | 男生女生 | 男生女生 | 女生女生 | |
女生 | 男生女生 | 女生女生 |
所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.
點睛:本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總人數(shù)是解題的關鍵;注意運用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.
【題型】解答題
【結束】
24
【題目】為響應國家全民閱讀的號召,某社區(qū)鼓勵居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計每年的借閱人數(shù)和圖書借閱總量(單位:本),該閱覽室在2015年圖書借閱總量是7500本,2017年圖書借閱總量是10800本.
(1)求該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率.
(2)已知2017年該社區(qū)居民借閱圖書人數(shù)有1350人,預計2018年達到1440人,如果2017年至2018年圖書借閱總量的增長率不低于2015年至2017年的年平均增長率,設2018年的人均借閱量比2017年增長a%,求a的值至少是多少?
【答案】(1)20%;(2)12.5
【解析】分析:(1)經(jīng)過兩次增長,求年平均率的問題,應該明確原來的基數(shù),增長后的結果.設這兩年的年平均增長率為,則經(jīng)過兩次增長以后圖書館有書本,即可列方程求解.(2)先求出2018年圖書借閱總量的最小值,再求出2017年的人均借閱量、2018年的人均借閱量,進一步求得a的值至少為多少.
詳解:(1)設該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率為x,根據(jù)題意得, ,即,解得=0.2, =-2.2(舍去).
所以該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率為20%.
(2)由題意,若2017年至2018年圖書借閱總量的增長率等于2015年至2017年的年平均增長率,則可求出a的最小值,
即2018年借閱總量=10800(1+0.2)=12960(本),
所以2017年人均借閱量=(本),
同理2018年人均借閱量=(本),
則2017年至2018年人均借閱量的增長率至少為.
故a的值至少是12.5.
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生的課余生活情況,某中學在全校范圍內隨機抽取部分學生進行問卷調查. 問卷中請學生選擇最喜歡的課余生活種類(每人只選一類),選項有音樂類、美術類、體育類及其他共四類,調查后將數(shù)據(jù)繪制成扇形統(tǒng)計圖和條形統(tǒng)計圖(如圖所示).
(1)體育所占的百分比是_______,選擇其他的人數(shù)是________
(2)在問卷調查中,小丁和小李分別選擇了音樂類和美術類,校學生會要從選擇音樂類和美術類的學生中分別抽取一名學生參加活動,用列表或畫樹狀圖的方法求小丁和小李恰好都被選中的概率;
(3)如果該學校有500名學生,請你估計該學校中最喜歡體育運動的學生約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元,一律按原價打九折;
③一次性購書超過200元,一律按原價打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某人出去散步,從家里出發(fā),走了20min,到達一個離家900m的閱報亭,看了10min報紙后,用了15min返回家里,下面圖象中正確表示此人離家的距離y(m)與時間x(min)之家關系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學有若干套損壞的桌椅,現(xiàn)有甲、乙兩名木工,甲每天可以修桌椅16套,乙每天比甲多修桌椅8套,甲單獨修完這些桌椅比乙單獨修完多用10天,學校每天付甲80元修理費,付乙120元修理費.
(1)這批損壞的桌椅有多少套?(列方程解答)
(2)在修理過程中,學校要派一名工作人員進行質量監(jiān)督,學校負擔他每天30元生活補助費,現(xiàn)有兩種修理方案:
①由乙單獨修理;
②甲、乙合作同時修理.
你認為哪種方案省錢?試通過計算說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以四邊形ABCD的邊AB、AD為底邊分別作等腰三角形ABF和ADE,連接EB.
(1)當四邊形ABCD為正方形時(如圖1),以邊AB、AD為斜邊分別向外側作等腰直角三角形ABF和ADE,連接EB、FD,線段EB和FD的數(shù)量關系是 .
(2)當四邊形ABCD為矩形時(如圖2),以邊AB、AD為斜邊分別向內側作等腰直角三角形ABF和ADE,連接EF、BD,線段EF和BD具有怎樣的數(shù)量關系?請加以證明;
(3)當四邊形ABCD為平行四邊形時(如圖3),以邊AB、AD為斜邊分別向平行四邊形內測、外側作等腰直角三角形ABF和ADE,且△EAD與△FBA的頂角都為α,連接EF、BD,交點為G,請用α表示出∠EGD,并說明理由.
圖1 圖2 圖3
【答案】(1)EF=BD;(2)EF=BD;(3)
【解析】分析:(1)正方形的性質、等邊三角形的性質和全等三角形的證明方法可證明△AFD≌△ABE,由全等三角形的性質即可得到EB=FD;(2)根據(jù)等腰直角三角形的性質可得,再證得∠BAD=∠FAE,即可判定△BAD∽△FAE ,根據(jù)相似三角形的性質可得,即可得;(3),先證△BFA∽△DEA,即可得,
再證得,所以△BAD∽△FAE,根據(jù)全等三角形的性質即可得,再由∠AHE=∠DHG,即可得.
詳解:(1)EF=BD,
理由如下:
四邊形ABCD為正方形,
∴AB=AD,
∵以四邊形ABCD的邊AB、AD為邊分別向外側作等邊三角形ABF和ADE,
∴AF=AE,∠FAB=∠EAD=60°,
∵∠FAD=∠BAD+∠FAB=90°+60°=150°,
∠BAE=∠BAD+∠EAD=90°+60°=150°,
∴∠FAD=∠BAE,
在△AFD和△ABE中, ,
∴△AFD≌△ABE,
∴EB=FD;
(2)EF=BD.
證明:∵△AFB為等腰直角三角形
∴,∠FAB=45°
同理: ,∠EAD=45° ∴∠BAD+∠FAD=∠EAD+∠DAF
即∠BAD=∠FAE
∵, ∴
∴△BAD∽△FAE ∴
即:
(3)解:
∵△AFB為等腰直角三角形,∴FB=FA,
同理:ED=EA,∴,
又∵ ,∴△BFA∽△DEA,
∴,
∴,
∴,
∴△BAD∽△FAE,
∴,
又∵∠AHE=∠DHG,
∴.
點睛:本題考查了正方形的性質、全等三角形的判定和性質、等邊三角形的性質等腰直角三角形的先證、相似三角形的判定和性質,題目的綜合性很強,難度也不小,解題的關鍵是對特殊幾何圖形的性質要準確掌握.
【題型】解答題
【結束】
27
【題目】如圖,二次函數(shù)的圖象交x軸于A、B兩點,交y軸于點C,點B的坐標為(3,0),頂點C的坐標為(1,4).連接BC.
(1)求二次函數(shù)的解析式和直線BC的解析式;
(2)點M是直線BC上的一個動點(不與B、C重合),過點M作x軸的垂線,交拋物線于點N,交x軸于點P.
①如圖1,求線段MN長度的最大值;
②如圖2,連接AM,QN,QP.試問:拋物線上是否存在點Q,使得與的面積相等,且線段NQ的長度最?如果存在,求出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運算題:
計算:
她發(fā)現(xiàn),這個算式反映的是前后兩部分的和,而這兩部分之間存在著某種關系,利用這種關系,他順利地解答了這道題。
(1)前后兩部分之間存在著什么關系?
(2)先計算哪步分比較簡便?并請計算比較簡便的那部分。
(3)利用(1)中的關系,直接寫出另一部分的結果。
(4)根據(jù)以上分析,求出原式的結果。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x的圖象交于點A、B,點B的橫坐標是4.點P是第一象限內反比例函數(shù)圖象上的動點,且在直線AB的上方.
(1)若點P的坐標是(1,4),直接寫出k的值和△PAB的面積;
(2)設直線PA、PB與x軸分別交于點M、N,求證:△PMN是等腰三角形;
(3)設點Q是反比例函數(shù)圖象上位于P、B之間的動點(與點P、B不重合),連接AQ、BQ,比較∠PAQ與∠PBQ的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°.
(1)請用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明);
(2)在(1)的條件下,若∠B=45°,AB=1,⊙P切BC于點D,求劣弧的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com