【題目】如圖,在等邊△ABC中,AH⊥BC,垂足為H,且AH=6 cm,點(diǎn)D是AB的中點(diǎn),點(diǎn)P是AH上一動(dòng)點(diǎn),則DP與BP和的最小值是__________cm.
【答案】6
【解析】
作點(diǎn)B關(guān)于AH的對(duì)稱點(diǎn)B′,由等邊三角形的性質(zhì)可知B′與點(diǎn)C重合,連接CD,則CD的長(zhǎng)度即為DP與BP和的最小值,由等邊三角形的性質(zhì)可求出△CAD≌△ACH,則CD=AH=6cm.
作點(diǎn)B關(guān)于AH的對(duì)稱點(diǎn)B′,
∵△ABC是等邊三角形,
∴B′與點(diǎn)C重合,連接CD,則CD的長(zhǎng)度即為DP與BP和的最小值,
∵△ABC是等邊三角形,D為AB的中點(diǎn),
∴CD⊥AB,∠ACD=30°,
∵AH⊥BC,
∴∠CAH=30°,AC=AC,
∴△CAD≌△ACH,
∴CD=AH=6cm.
故答案為:6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位籃球運(yùn)動(dòng)員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運(yùn)動(dòng),當(dāng)球運(yùn)動(dòng)的水平距離為2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是( 。
A. 此拋物線的解析式是y=﹣x2+3.5
B. 籃圈中心的坐標(biāo)是(4,3.05)
C. 此拋物線的頂點(diǎn)坐標(biāo)是(3.5,0)
D. 籃球出手時(shí)離地面的高度是2m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程ax+b=0(a≠0)的解為x=-2,點(diǎn)(1,3)是拋物線y=ax2+bx+c(a≠0)上的一個(gè)點(diǎn),則下列四個(gè)點(diǎn)中一定在該拋物線上的是( )
A. (2,3) B. (0,3)
C. (-1,3) D. (-3,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為扶持大學(xué)生自主創(chuàng)業(yè),市政府提供了80萬元的無息貸款,用于某大學(xué)生開辦公司,生產(chǎn)并銷售自主研發(fā)的一種電子產(chǎn)品,并約定用該公司經(jīng)營(yíng)的利潤(rùn)逐步償還無息貸款.已知該電子產(chǎn)品的生產(chǎn)成本為每件40元,公司每月要支付其他費(fèi)用15萬元.該產(chǎn)品每月的銷售量y(萬件)與銷售單價(jià)x(元)滿足如圖所示的一次函數(shù)關(guān)系:
(1)求每月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),該公司每月銷售利潤(rùn)最大.
(3)若相關(guān)部門要求該電子產(chǎn)品的銷售單價(jià)不得低于其生產(chǎn)成本,且銷售每件產(chǎn)品的利潤(rùn)率不能超過25%,則該公司最早用幾個(gè)月可以還清無息貸款?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了乘法公式后,老師向同學(xué)們提出了如下問題:
①將多項(xiàng)式x2+4x+3因式分解;
②求多項(xiàng)式x2+4x+3的最小值.
請(qǐng)你運(yùn)用上述的方法解決下列問題:
(1)將多項(xiàng)式x2+8x-20因式分解;
(2)求多項(xiàng)式x2+8x-20的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】成都是全國(guó)最佳旅游城市,某校攝影社團(tuán)在“最美錦城”主題宣傳周里,設(shè)計(jì)了五條精品旅游路線:草堂尋詩,觀鳥白鷺灣,三圣賞花,探秘金沙,拜相武侯祠.隨機(jī)抽取部分學(xué)生舉行“最愛旅游路線”投票活動(dòng),參與者每人選出一條最愛的旅游路線,社團(tuán)對(duì)投票進(jìn)行了統(tǒng)計(jì),并繪制出如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)解決下列問題.
(1)參與本次投票的總?cè)藬?shù)是_________人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中,線路部分的圓心角是_______度;
(3)若該校共有1200名學(xué)生,請(qǐng)估計(jì)選擇路線“拜相武侯祠”的學(xué)生有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.在△AOB中∠AOB=,OA=OB=10,分別以OA、OB所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系(如圖所示).點(diǎn)P自點(diǎn)A出發(fā)沿線段AB勻速運(yùn)動(dòng)到點(diǎn)B停止,同時(shí)點(diǎn)D自原點(diǎn)O出發(fā)沿x軸正方向勻速運(yùn)動(dòng),在點(diǎn)P、D運(yùn)動(dòng)的過程中,始終滿足PO=PD,過點(diǎn)O、D向AB作垂線,垂足分別為點(diǎn)C、E,設(shè)OD的長(zhǎng)為x.
(1)求AP的長(zhǎng)(用含x的代數(shù)式表示)
(2)在點(diǎn)P、D的運(yùn)動(dòng)過程中,線段PC與DE是否相等?若相等,請(qǐng)給予證明;若不相等,請(qǐng)說明理由;
(3)設(shè)以點(diǎn)P、O、D、E為頂點(diǎn)的四邊形的面積為y,請(qǐng)直接寫出y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度).
(1)請(qǐng)畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于x軸對(duì)稱;
(2)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點(diǎn)B2,C2的坐標(biāo);
(3)若點(diǎn)P(a,b)是△ABC內(nèi)任意一點(diǎn),試寫出將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后點(diǎn)P的對(duì)應(yīng)點(diǎn)P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(a,1),B(b,﹣2),C(0,c),且(a﹣2)2++|c+2|=0.
(1)如圖1,求A、B、C三點(diǎn)的坐標(biāo).
(2)如圖2,延長(zhǎng)AC至P(﹣a,﹣5),連PO、PB.求.
(3)將線段AC平移,使點(diǎn)A的對(duì)應(yīng)點(diǎn)E恰好落在y軸正半軸上,點(diǎn)C的對(duì)應(yīng)點(diǎn)為F,連AF交y軸于G,當(dāng)EG=3OG時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com