若將拋物線y=3x2+1向下平移1個單位后,則所得新拋物線的解析式是        

y=3x2

解析試題分析:原拋物線頂點坐標(biāo)為(0,1),向下平移1個單位后,拋物線頂點坐標(biāo)為(0,0),平移不改變二次項系數(shù),可根據(jù)頂點式求出平移后拋物線解析式:y=3x2
考點:二次函數(shù)圖象與平移變換.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

請寫出一個開口向上,并且與y軸交于點(0,-1)的拋物線的解析式__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

沙坪壩火車站將改造成一個集高鐵、輕軌、公交、停車場、商業(yè)于一體的地下七層建筑,地面上欲建造一個圓形噴水池,如圖,點表示噴水池的水面中心,表示噴水柱子,水流從點噴出,按如圖所示的直角坐標(biāo)系,每一股水流在空中的路線可以用來描述,那么水池的半徑至少要          米,才能使噴出的水流不致落到池外。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

小明設(shè)計了一個電子游戲:一電子跳蚤從橫坐標(biāo)為t(t>0)的P1點開始,按點的橫坐標(biāo)依次增加1的規(guī)律,在拋物線上向右跳動,得到點P2、P3,這時△P1P2P3的面積為        。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數(shù)的取值范圍是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

若關(guān)于x函數(shù)的圖像與x軸有唯一公共點,則=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

二次函數(shù)圖象的形狀與y=3x2相同,且它的頂點坐標(biāo)是,該解析式為             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點A是拋物線y=x2在第一象限上的一個點,連結(jié)OA,過點A作AB⊥OA,交y軸于點B,設(shè)點A的橫坐標(biāo)為n.

【探究】:
(1)當(dāng)n=1時,點B的縱坐標(biāo)是  ;
(2)當(dāng)n=2時,點B的縱坐標(biāo)是  ;
(3)點B的縱坐標(biāo)是  (用含n的代數(shù)式表示).
【應(yīng)用】:
如圖②,將△OAB繞著斜邊OB的中點順時針旋轉(zhuǎn)180°,得到△BCO.
(1)求點C的坐標(biāo)(用含n的代數(shù)式表示);
(2)當(dāng)點A在拋物線上運動時,點C也隨之運動.當(dāng)1≤n≤5時,線段OC掃過的圖形的面積是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

在平面直角坐標(biāo)系xOy中,直線y=kx(k為常數(shù))與拋物線交于A,B兩點,且A點在y軸左側(cè),P點的坐標(biāo)為(0,﹣4),連接PA,PB.有以下說法:
①PO2=PA•PB;
②當(dāng)k>0時,(PA+AO)(PB﹣BO)的值隨k的增大而增大;
③當(dāng)時,BP2=BO•BA;
④△PAB面積的最小值為
其中正確的是     (寫出所有正確說法的序號)

查看答案和解析>>

同步練習(xí)冊答案