【題目】如圖,在中,點(diǎn)是線段上的動(dòng)點(diǎn),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連接.若已知,設(shè)兩點(diǎn)間的距離為兩點(diǎn)間的距離為兩點(diǎn)間的距離為.(若同學(xué)們打印的BC的長(zhǎng)度如不是,請(qǐng)同學(xué)們重新畫圖、測(cè)量)

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了的幾組對(duì)應(yīng)值,如下表:

0

1

2

3

4

5

6

7

8

7.03

6.20

5.44

4.76

4.21

3.85

3.73

3.87

4.26

5.66

4.32

1.97

1.59

2.27

3.43

4.73

寫出的值.(保留1位小數(shù)

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖像,解決問(wèn)題:

①當(dāng)在線段上時(shí),的長(zhǎng)度約為________;

②當(dāng)為等腰三角形時(shí),的長(zhǎng)度約為_______

【答案】1;(2)見(jiàn)詳解;(3)①6;②3

【解析】

1)當(dāng)時(shí),,即可求解

2)描點(diǎn)作出圖像即可.

3)①當(dāng)在線段上時(shí),即:;②分三種情況分別求解.

1)當(dāng)時(shí),點(diǎn)B與點(diǎn)D重合,cm

當(dāng),測(cè)量出cm

2)描繪后表格如下圖:

3)①當(dāng)在線段上時(shí),即:

從圖像可以看出,當(dāng)時(shí),cm

故答案為:6.

②當(dāng)時(shí),即:,此時(shí)0,當(dāng)得不到三角形,故

當(dāng)時(shí),即:,在圖上畫出直線,此時(shí)

當(dāng)時(shí),即:,從上圖可以看出cm

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問(wèn)題情境

數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們以“三角形的旋轉(zhuǎn)”為主題開(kāi)展數(shù)學(xué)活動(dòng),是兩個(gè)全等的直角三角形紙片,其中,

解決問(wèn)題

1)如圖①,智慧小組將繞點(diǎn)順時(shí)針旋轉(zhuǎn),發(fā)現(xiàn)當(dāng)點(diǎn)恰好落在邊上時(shí),,請(qǐng)你幫他們證明這個(gè)結(jié)論;

2)縝密小組在智慧小組的基礎(chǔ)上繼續(xù)探究,連接,當(dāng)C繞點(diǎn)繼續(xù)旋轉(zhuǎn)到如圖②所示的位置時(shí),他們提出,請(qǐng)你幫他們驗(yàn)證這一結(jié)論是否正確,并說(shuō)明理由;

探索發(fā)現(xiàn)

3)如圖③,勤奮小組在前兩個(gè)小組的啟發(fā)下,繼續(xù)旋轉(zhuǎn),當(dāng)三點(diǎn)共線時(shí),求的長(zhǎng);

4)在圖①的基礎(chǔ)上,寫出一個(gè)邊長(zhǎng)比為的三角形(可添加字母).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了落實(shí)國(guó)務(wù)院的指示精神,地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)關(guān)系式;

(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=x2+x1x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其頂點(diǎn)為D.將拋物線位于直線ly=tt)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個(gè)“M”形的新圖象.

1)求點(diǎn)A,BD的坐標(biāo)

2)如圖①,拋物線翻折后,點(diǎn)D落在點(diǎn)E處.當(dāng)點(diǎn)EABC內(nèi)(含邊界)時(shí),求t的取值范圍;

3)如圖②,當(dāng)t=0時(shí),若Q“M”形新圖象上一動(dòng)點(diǎn),是否存在以CQ為直徑的圓與x軸相切于點(diǎn)P?若存在,直接寫出出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某植物園有一塊足夠大的空地,其中有一堵長(zhǎng)為a米的墻,現(xiàn)準(zhǔn)備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開(kāi).小俊設(shè)計(jì)了如圖甲和乙的兩種方案:

方案甲中AD的長(zhǎng)不超過(guò)墻長(zhǎng);方案乙中AD的長(zhǎng)大于墻長(zhǎng).

1)若a=6

①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長(zhǎng)是多少米?

②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?

2)若0a6.5,哪種方案能圍成面積最大的矩形花圃?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,邊上的動(dòng)點(diǎn)(不與點(diǎn)重合),將沿所在的直線翻折,得到,連接,則下列判斷:

①當(dāng)時(shí),

②當(dāng)時(shí),

③當(dāng)時(shí),;

長(zhǎng)度的最小值是1

其中正確的判斷是______(填入正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtAOB的平分線ON上依次取點(diǎn)C,F(xiàn),M,過(guò)點(diǎn)CDEOC,分別交OA,OB于點(diǎn)D,E,以FM為對(duì)角線作菱形FGMH.已知∠DFE=GFH=120°,F(xiàn)G=FE,設(shè)OC=x,圖中陰影部分面積為y,則yx之間的函數(shù)關(guān)系式是( )

A. y= B. y= C. y=2 D. y=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.

收集數(shù)據(jù)

從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(jī)(百分制)如下:

甲 78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙 93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù)

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績(jī)

人數(shù)

部門

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(說(shuō)明:成績(jī)80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

得出結(jié)論:

.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為_(kāi)___________;

.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_(kāi)____________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂(lè)獎(jiǎng).

(1)從獲得美術(shù)獎(jiǎng)和音樂(lè)獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;

(2)分別從獲得美術(shù)獎(jiǎng)、音樂(lè)獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹(shù)狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案

部門

平均數(shù)

中位數(shù)

眾數(shù)

78.3

77.5

75

78

80.5

81

<abbr id="a84am"><button id="a84am"></button></abbr>
    <li id="a84am"></li>