【題目】我們知道,正整數(shù)的和1+3+5+…+(2n﹣1)=n2,若把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個數(shù)(從左到右數(shù)),如A8=(2,3),則A2018=_____
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)的圖象經(jīng)過,,其中,過點A作x軸的垂線,垂足為C,過點B作y軸的垂線,垂足為D,連結(jié)AD,DC,CB,AC與BD相交于點E.
(1)若的面積為4,求點B的坐標;
(2)四邊形ABCD能否成為平行四邊形,若能,求點B的坐標,若不能說明理由;
(3)當時,求證:四邊形ABCD是等腰梯形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線C1:y=x2﹣1(﹣1≤x≤1)與x軸交于A、B兩點,拋物線C2與拋物線C1關于點A中心對稱,拋物線C3與拋物線C1關于點B中心對稱.若直線y=﹣x+b與由C1、C2、C3組成的圖形恰好有2個公共點,則b的取值或取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提高公民社會責任感,保證每個納稅人公平納稅,調(diào)節(jié)不同階層貧富差距,營造“納稅光榮”社會氛圍,2019年我國實行新的《個人收入所得稅征收辦法》,將個人收所得稅的起征點提高至5000元(即全月個人收所得不超過5000元的,免征個人收入所得稅):個人收入超過5000元的,其超出部分稱為“應納稅所得額”,國家對納稅人的“應納稅所得額”實行“七級超額累進個人所得稅制度”,該制度的前兩級納稅標準如下:
①全月應納稅所得額不超過3000元的,按3%的稅率計稅;
②全月應納稅所得額超過3000元但不超過12000元的部分,按10%的稅率計稅.
按照新的《個人收入所得稅征收辦法》,在2019年某月,如果納稅人甲繳納個人收入所得稅75元,納稅人乙當月收入為9500元,納稅人丙繳納個人收入所得稅110元.
(1)甲當月個人收入所得是多少?
(2)乙當月應繳納多少個人收入所得稅?
(3)丙當月個人收入所得是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃購買一批籃球和足球,已知購買2個籃球和1個足球共需320元,購買3個籃球和2個足球共需540元.
(1)求每個籃球和每個足球的售價;
(2)如果學校計劃購買這兩種球共50個,總費用不超過5500元,那么最多可購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,和共頂點,和重合,為的平分線,為的平分線,,.
(1)如圖2,若,,則
(2)如圖3,若繞逆時針旋轉(zhuǎn),且,求.
(3)如圖4,若,繞逆時針旋轉(zhuǎn),轉(zhuǎn)速為/秒,同時繞逆時針旋轉(zhuǎn),轉(zhuǎn)速為/秒(轉(zhuǎn)到與共線時停止運動),且平分,以下兩個結(jié)論:① 為定值;②為定值,請選擇正確的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】浠水縣商場某柜臺銷售每臺進價分別為160元、120元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若商場準備用不多于7500元的金額再采購這兩種型號的電風扇共50臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,商場銷售完這50臺電風扇能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線l:y=x﹣與x軸交于點B1,以OB1為邊長作等邊△A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊△A2A1B2,過點A2作A1B2平行于x軸,交直線l于點B3,以A2B3為邊長作等邊△A3A2B3,…,則等邊△A2017A2018B2018的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2﹣x+c與x軸相交于A、B兩點,并與直線y=x﹣2交于B、C兩點,其中點C是直線y=x﹣2與y軸的交點,連接AC.
(1)求拋物線的解析式;
(2)證明:△ABC為直角三角形;
(3)△ABC內(nèi)部能否截出面積最大的矩形DEFG?(頂點D、E、F、G在△ABC各邊上)若能,求出最大面積;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com