如圖,已知點A(8,0),sin∠ABO=
4
5
,拋物線經過點O、A,且頂點在△AOB的外接圓上,則此拋物線的解析式為(  )
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

如圖所示:連接AC,過圓心O′作EF⊥OA,
∵∠AOC=90°,∠ABO=∠OCA,
AO
AC
=
4
5
,
∵點A(8,0),
∴AC=10,
根據(jù)題意得出:AM=OM=4,AO′=5,
∴MO′=3,∴MF=2,
∴F點坐標為:(4,-2),
設過O,A,F(xiàn)的拋物線解析式為:y=a(x-4)2-2,
將A代入(8,0)得:
0=a(8-4)2-2,
解得:a=
1
8
,
∴此時拋物線解析式為:y=
1
8
(x-4)2-2=
1
8
x2-x,
根據(jù)題意得出:AM=OM=4,AO′=5,
∴MO′=3,∴ME=8,
∴E點坐標為:(4,8),
設過O,A,E的拋物線解析式為:y=a(x-4)2+8,
將A代入(8,0)得:
0=a(8-4)2+8,
解得:a=-
1
2
,
∴此時拋物線解析式為:y=-
1
2
(x-4)2+8=-
1
2
x2+x,
故選:D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-x2+bx+c的圖象經過(1,0)和(0,3)兩點,它的部分圖象如下圖.
(1)求b、c的值;
(2)寫出當y>0時,x的取值范圍;
(3)求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,將腰長為
5
的等腰Rt△ABC(∠C是直角)放在平面直角坐標系中的第二象限,其中點A在y軸上,點B在拋物線y=ax2+ax-2上,點C的坐標為(-1,0).
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關系式為______,其頂點坐標為______;
(3)將三角板ABC繞頂點A逆時針方向旋轉90°,到達△AB′C′的位置.請判斷點B′、C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側),點A、點B的橫坐標是一元二次方程x2-4x-12=0的兩個根.
(1)請直接寫出點A、點B的坐標.
(2)請求出該二次函數(shù)表達式及對稱軸和頂點坐標.
(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標;若不存在,請說明理由.
(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QDAC交BC于點D,設Q點坐標(m,0),當△CDQ面積S最大時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,點A,B,C,D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,-3),AB為半圓的直徑,半圓圓心M的坐標為(1,0),半圓半徑為2,則經過點C的“蛋圓”切線EC的解析式是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,Rt△AOB的頂點坐標分別為A(0,2),O(0,0),B(4,0),△AOB繞O點按逆時針方向旋轉90°得到△COD.
(1)求C、D兩點的坐標;
(2)求經過C、D、B三點的拋物線的解析式;
(3)設(2)中的拋物線的頂點為P,AB的中點為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,將直線y=kx沿y軸向下平移3個單位長度后恰好經過B(-3,0)及y軸上的C點.若拋物線y=-x2+bx+c與x軸交于A、B兩點(點A在點B的右側),且經過點C,其對稱軸與直線BC交于點E,與x軸交于點F.
(1)求直線BC及拋物線的解析式;
(2)設拋物線的頂點為D,點P在拋物線的對稱軸上,若∠APD=∠ACB,求點P的坐標;
(3)在拋物線上是否存在點M,使得直線CM把四邊形EFOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

兒童商場購進一批M型服裝,銷售時標價為75元/件,按8折銷售仍可獲利50%.商場現(xiàn)決定對M型服裝開展促銷活動,每件在8折的基礎上再降價x元銷售,已知每天銷售數(shù)量y(件)與降價x(元)之間的函數(shù)關系式為y=20+4x(x>0).
(1)求M型服裝的進價;
(2)求促銷期間每天銷售M型服裝所獲得的利潤W的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,拋物線與x軸交于點A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3).以AB為直徑作⊙M,過拋物線上一點P作⊙M的切線PD,切點為D,并與⊙M的切線AE相交于點E,連接DM并延長交⊙M于點N,連接AN、AD.
(1)求拋物線所對應的函數(shù)關系式及拋物線的頂點坐標;
(2)若四邊形EAMD的面積為4
3
,求直線PD的函數(shù)關系式;
(3)拋物線上是否存在點P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案