【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:△BED≌△CFD;
(2)若∠A=60°,BE=2,求△ABC的周長.
【答案】(1)證明見解析;(2)24.
【解析】
試題分析:(1)根據(jù)DE⊥AB,DF⊥AC,AB=AC,求證∠B=∠C.再利用D是BC的中點(diǎn),求證△BED≌△CFD即可得出結(jié)論.
(2)根據(jù)AB=AC,∠A=60°,得出△ABC為等邊三角形.然后求出∠BDE=30°,再根據(jù)題目中給出的已知條件即可算出△ABC的周長.
試題解析:(1)∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵AB=AC,
∴∠B=∠C(等邊對等角).
∵D是BC的中點(diǎn),
∴BD=CD.
在△BED和△CFD中,
,
∴△BED≌△CFD(AAS).
∴DE=DF
(2)∵AB=AC,∠A=60°,
∴△ABC為等邊三角形.
∴∠B=60°,
∵∠BED=90°,
∴∠BDE=30°,
∴BE=BD,
∵BE=2,
∴BD=4,
∴BC=2BD=8,
∴△ABC的周長為24.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊隊為從甲、乙兩名運(yùn)動員中選拔一人參加比賽,對他們進(jìn)行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):
(1)完成表中填空① ;② ;
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績方差為,你認(rèn)為推薦誰參加比賽更合適,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD.
(1)P是上一點(diǎn)(不與C、D重合),求證:∠CPD=∠COB;
(2)點(diǎn)P′在劣弧CD上(不與C、D重合)時,∠CP′D與∠COB有什么數(shù)量關(guān)系?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這個分式為“和諧分式”.
(1)下列分式中,___________是和諧分式(填寫序號即可);
①; ② ;③ ;④
(2)若為整數(shù),且為和諧分式,請寫出的值;
(3)在化簡時,
小冬和小奧分別進(jìn)行了如下三步變形:
小冬:原式
小奧:原式
顯然,小奧利用了其中的和諧分式, 第三步所得結(jié)果比小冬的結(jié)果簡單,原因是: ,請你接著小奧的方法完成化簡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生小明將線段的垂直平分線上的點(diǎn),稱作線段的“軸點(diǎn)”.其中,當(dāng)時,稱為線段的“長軸點(diǎn)”;當(dāng)時,稱為線段的“短軸點(diǎn)”.
(1)如圖1,點(diǎn),的坐標(biāo)分別為,,則在,,,中線段的“短軸點(diǎn)”是______.
(2)如圖2,點(diǎn)的坐標(biāo)為,點(diǎn)在軸正半軸上,且.
①若為線段的“長軸點(diǎn)”,則點(diǎn)的橫坐標(biāo)的取值范圍是( )
A. B. C. D.或
②點(diǎn)為軸上的動點(diǎn),點(diǎn),在線段的垂直平分線的同側(cè).若為線段的“軸點(diǎn)”,當(dāng)線段與的和最小時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點(diǎn),直線平行于直線EC,且直線與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點(diǎn)A恰好落在直線上, 則DF的長為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.設(shè)∠BAC=α,∠DCE=β.
(1)如圖①,點(diǎn)D在線段BC上移動時,角α與β之間的數(shù)量關(guān)系是____________,請說明理由;
(2)如圖②,點(diǎn)D在線段BC的延長線上移動時,角α與β之間的數(shù)量關(guān)系是____________,請說明理由;
(3)當(dāng)點(diǎn)D在線段BC的反向延長線上移動時,請在圖③中畫出完整圖形并猜想角α與β之間的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為,將直線沿軸向下平移兩個單位得到直線,直線與拋物線的對稱軸交于點(diǎn),求直線的解析式;
(3)在(2)的條件下,求到直線距離相等的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(0,1),點(diǎn)B(3,0),點(diǎn)C(4,3).
(1)判斷△ABC的形狀并說明理由;
(2)在線段OC的右側(cè),以OC為邊作等腰直角△OCD,點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com