如圖,四邊形ABCD中,∠BAD=∠ACB=90º,AB=AD,AC=4BC,設(shè)CD的長為,四邊形ABCD的面積為,則之間的函數(shù)關(guān)系式是(   )

A.         B.

C.        D.

 

【答案】

B

【解析】

試題分析:將△ABC繞點A逆時針旋轉(zhuǎn)90°到△ADE的位置,根據(jù)全等三角形的性質(zhì),結(jié)合勾股定理,把梯形的上底DE,下底AC,高DF分別用含x的式子表示,即可得到結(jié)果.

如圖,作AE⊥AC,DE⊥AE,兩線交于E點,作DF⊥AC垂足為F點,

∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE

∴∠BAC=∠DAE

又∵AB=AD,∠ACB=∠E=90°

∴△ABC≌△ADE(AAS)

∴BC=DE,AC=AE,

設(shè)BC=a,則DE=a,DF=AE=AC=4BC=4a,

CF=AC-AF=AC-DE=3a,

在Rt△CDF中,由勾股定理得,

,即,

解得

故選C.

考點:本題考查的是根據(jù)實際問題列二次函數(shù)關(guān)系式

點評:本題運用了旋轉(zhuǎn)的性質(zhì),將求不規(guī)則四邊形的面積問題轉(zhuǎn)化為求梯形的面積,充分體現(xiàn)了全等三角形,勾股定理再解題中的作用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案