【題目】有一道作業(yè)題:

1)請(qǐng)你完成這道題的證明;

已知:如圖1,在正方形ABCD中,G是對(duì)角線BD上一點(diǎn)(GB,D不重合)連結(jié)AGCG

求證:BAG≌△BCG

2)做完(1)后,小穎善于反思,她又提出了如下的問題,請(qǐng)你解答.

如果在射線CB上取點(diǎn)E,使GEGC,連結(jié)GE

①如圖2,當(dāng)點(diǎn)E在線段CB上時(shí),求證:AGEG

②探究線段ABBE,BG之間的數(shù)量關(guān)系.

【答案】(1)見解析;(2)①見解析;②當(dāng)點(diǎn)E在線段CB上時(shí),AB+BEBG;當(dāng)點(diǎn)E在線段CB延長(zhǎng)線上時(shí),ABBEBG

【解析】

1)由正方形知BD平分∠ABC,據(jù)此得∠ABG=∠CBG,結(jié)合ABBC,BGBG即可得證;

2)①由BAG≌△BCG知∠BAG=∠BCG,據(jù)此得GEGC,∠BCG=∠GEC,從而知∠GEC=∠BAG,再根據(jù)∠GEC+BEG180°知∠BAG+BEG180°,從而得∠ABE+AGE180°,即可得證;

②分點(diǎn)E在線段CB上和點(diǎn)E在線段CB延長(zhǎng)線上兩種情況分別求解可得.

解:(1)如圖1,

在正方形ABCD中,BD是對(duì)角線,

BD平分∠ABC,

∴∠ABG=∠CBG,

又∵ABBC,BGBG

∴△BAG≌△BCGSAS);

2)①如圖2

由(1)知BAG≌△BCG,

∴∠BAG=∠BCG,

GEGC

∴∠BCG=∠GEC,

∴∠GEC=∠BAG

又∵∠GEC+BEG180°,

∴∠BAG+BEG180°

∴∠ABE+AGE180°,

又∵∠ABE90°,

∴∠AEG90°

AGEG

②如圖3,當(dāng)點(diǎn)E在線段CB上時(shí),作GHBCH

RtBGH中,BH BG

BEBHEH①,ABBH+CH②,

GEGC

EHCH,

∴①+②,得:AB+BE2BH

AB+BEBG;

如圖3,當(dāng)點(diǎn)E在線段CB延長(zhǎng)線上時(shí),作GHBCH

RtBGH中,BHBG,

BEEHBH①,ABBH+HC②,

∴②﹣①,得:ABBE2BH,

ABBEBG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點(diǎn)AB(點(diǎn)A在點(diǎn)B的左側(cè)).

1)求點(diǎn)A,B的坐標(biāo),并根據(jù)該函數(shù)圖象寫出y0時(shí)x的取值范圍;

2)把點(diǎn)B向上平移m個(gè)單位得點(diǎn)B1.若點(diǎn)B1向左平移n個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n6)個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B3重合.已知m0,n0,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了20000kg淡水魚,計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬(wàn)元;放養(yǎng)20天的總成本為30.8萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).

1)設(shè)每天的放養(yǎng)費(fèi)用是a萬(wàn)元,收購(gòu)成本為b萬(wàn)元,求ab的值;

2)設(shè)這批淡水魚放養(yǎng)t天后的質(zhì)量為mkg),銷售單價(jià)為y/kg.根據(jù)以往經(jīng)驗(yàn)可知:mt的函數(shù)關(guān)系為;yt的函數(shù)關(guān)系如圖所示.

①分別求出當(dāng)0t5050t100時(shí),yt的函數(shù)關(guān)系式;

②設(shè)將這批淡水魚放養(yǎng)t天后一次性出售所得利潤(rùn)為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤(rùn)=銷售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是小強(qiáng)洗漱時(shí)的側(cè)面示意圖,洗漱臺(tái)(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強(qiáng)身高166cm,下半身FG=100cm.洗漱時(shí)下半身與地面成80°(即∠FGK=80°),身體前傾成125°(即∠EFG=125°),腳與洗漱臺(tái)的距離GC=15cm(點(diǎn)D、CG、K在同一直線上).

(1)求此時(shí)小強(qiáng)頭部E點(diǎn)與地面DK的距離;

(2)小強(qiáng)希望他的頭部E點(diǎn)恰好在洗漱盆AB的中點(diǎn)O的正上方,他應(yīng)向前或后退多少(結(jié)果精確到0.1cm,參考數(shù)據(jù):cos80°≈0.17,sin80°≈0.98≈1.41)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點(diǎn)A4,4),C(﹣2,﹣2),點(diǎn)B,D在反比例函數(shù)的圖象上,對(duì)角線BDAC于點(diǎn)M,交x軸于點(diǎn)N,若,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【操作發(fā)現(xiàn)】

如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.

(1)請(qǐng)按要求畫圖:將ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′;

(2)在(1)所畫圖形中,∠AB′B=   

【問題解決】

如圖,在等邊三角形ABC中,AC=7,點(diǎn)P在ABC內(nèi),且∠APC=90°,BPC=120°,求APC的面積.

小明同學(xué)通過(guò)觀察、分析、思考,對(duì)上述問題形成了如下想法:

想法一:將APC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°,得到AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;

想法二:將APB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°,得到AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.

請(qǐng)參考小明同學(xué)的想法,完成該問題的解答過(guò)程.(一種方法即可)

【靈活運(yùn)用】

如圖,在四邊形ABCD中,AEBC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),求BD的長(zhǎng)(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為拓寬學(xué)生視野,我市某中學(xué)決定組織部分師生去廬山西海開展研學(xué)旅行活動(dòng),在參加此次活動(dòng)的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.為了安全,既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表所示.

甲種客車

乙種客車

載客量/(人/輛)

30

42

租金/(元/輛)

300

400

1)參加此次研學(xué)旅行活動(dòng)的老師和學(xué)生各有多少人?租用客車總數(shù)為多少輛?

2)設(shè)租用x輛乙種客車,租車總費(fèi)用為w元,請(qǐng)寫出wx之間的函數(shù)關(guān)系式;

3)在(2)的條件下,學(xué)校計(jì)劃此次研學(xué)旅行活動(dòng)的租車總費(fèi)用不超過(guò)3100元,租用乙種客車不少5輛,你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛汽車在某次行駛過(guò)程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)

(2)已知當(dāng)油箱中的剩余油量為8升時(shí),該汽車會(huì)開始提示加油,在此次行駛過(guò)程中,行駛了500千米時(shí),司機(jī)發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時(shí)離加油站的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,且ADAB,過(guò)點(diǎn)OOEACAD于點(diǎn)E,連接CE.若平行四邊形ABCD的周長(zhǎng)為20,則△CDE的周長(zhǎng)是( 。

A. 10B. 11C. 12D. 13

查看答案和解析>>

同步練習(xí)冊(cè)答案