如圖,半徑為5的⊙P與y軸相交于M(0,-4),N(0,-10)兩點(diǎn),則圓心P的坐標(biāo)為


  1. A.
    (5,-4)
  2. B.
    (4,-5)
  3. C.
    (4,-7)
  4. D.
    (5,-7)
C
分析:由M(0,-4),N(0,-10),即可得MN的值,然后連接PM,過點(diǎn)P作PE⊥MN于E,根據(jù)垂徑定理可得ME的值,然后由勾股定理,即可求得PE的值,則可得圓心P的坐標(biāo).
解答:解:∵M(jìn)(0,-4),N(0,-10),
∴MN=6,
連接PM,過點(diǎn)P作PE⊥MN于E,
∴ME=NE=MN=3,
∴OE=OM+EM=4+3=7,
在Rt△PEM,PE===4,
∴圓心P的坐標(biāo)為(4,-7).
故選C.
點(diǎn)評(píng):此題考查了垂徑定理,勾股定理的知識(shí).此題難度不大,解題的關(guān)鍵是數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,半徑為1的⊙D內(nèi)切于圓心角為60°的扇形OAB,
求:(1)弧AB的長(zhǎng);(2)陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,半徑為4的兩等圓相外切,它們的一條外公切線與兩圓圍成的陰影部分中,存在的最大圓的半徑等于
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,半徑為30km 的圓A是環(huán)保部分劃定的生態(tài)保護(hù)區(qū),B、C是位于保護(hù)區(qū)附近相距100km的兩城市.如果在 B、C兩城之間修一條筆直的公路,經(jīng)測(cè)量∠ABC=45°,∠ACB=30°.
問:此公路是否會(huì)穿過保護(hù)區(qū),請(qǐng)說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,半徑為1的小圓在半徑為9的大圓內(nèi)滾動(dòng),且始終與大圓相切,則小圓掃過的陰影部分的面積為
32π
32π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•高淳縣一模)如圖,半徑為2的兩個(gè)等圓⊙O1與⊙O2外切于點(diǎn)P,過O1作⊙O2的兩條切線,切點(diǎn)分別為A、B,與⊙O1分別交于C、D,則弧APB與弧CPD的長(zhǎng)度之和為

查看答案和解析>>

同步練習(xí)冊(cè)答案