【題目】某市為了鼓勵居民節(jié)約用電,采用分段計費的方法按月計算每戶家庭的電費,分兩檔收費:第一檔是當(dāng)月用電量不超過240度時實行“基礎(chǔ)電價”;第二檔是當(dāng)用電量超過240度時,其中的240度仍按照“基礎(chǔ)電價”計費,超過的部分按照“提高電價”收費.設(shè)每個家庭月用電量為x 度時,應(yīng)交電費為y 元.具體收費情況如折線圖所示,請根據(jù)圖象回答下列問題:
(1)“基礎(chǔ)電價”是____________元 度;
(2)求出當(dāng)x>240 時,y與x的函數(shù)表達式;
(3)若紫豪家六月份繳納電費132元,求紫豪家這個月用電量為多少度?
【答案】(1)0.5(2)y=0.6x-24(3)紫豪家這個月用電量為260度
【解析】
(1)由用電240度費用為120元可得;
(2)當(dāng)x>240時,待定系數(shù)法求解可得此時函數(shù)解析式;
(3)由132>120知,可將y=132代入(2)中函數(shù)解析式求解可得.
(1)“基礎(chǔ)電價”是120÷240=0.5元/度,
故答案為:0.5;
(2)設(shè)表達式為y=kx+b(k≠0),
∵過A(240,120),B(400,216),
∴,
解得: ,
∴表達式為y=0.6x-24;
(3)∵132>120,
∴當(dāng)y=132時,0.6x-24=132,
∴x=260,
答:紫豪家這個月用電量為260度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB交y軸于點A(0,1),交x軸于點B(3,0).直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,在點D的上方,設(shè)P(1,n).
(1)求直線AB的解析式;
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當(dāng)S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD繞點A順時針旋轉(zhuǎn)30°得到菱形AB′C′D′,其中點C的運動路徑為 ,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,-5),且與正比例函數(shù)y=x的圖象相交于點(2,a),求:
(1)a的值.
(2)k,b的值.
(3)這兩個函數(shù)圖象與x軸所圍成的三角形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)問題發(fā)現(xiàn) 如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.
填空:
①∠AEB的度數(shù)為;
②線段AD,BE之間的數(shù)量關(guān)系為 .
(2)拓展探究 如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題 如圖3,在正方形ABCD中,CD= ,若點P滿足PD=1,且∠BPD=90°,請直接寫出點A到BP的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負(fù)一場得0分,一隊共踢了30場比賽,負(fù)了9場,共得47分,那么這個隊勝了( 。
A. 10場 B. 11場 C. 12場 D. 13場
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當(dāng)△CEB′為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn) 如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當(dāng)點D恰好落在AB邊上時,填空:
② 線段DE與AC的位置關(guān)系是;
②設(shè)△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數(shù)量關(guān)系是 .
(2)猜想論證 當(dāng)△DEC繞點C旋轉(zhuǎn)到如圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究 已知∠ABC=60°,點D是角平分線上一點,BD=CD=4,DE∥AB交BC于點E(如圖4).若在射線BA上存在點F,使S△DCF=S△BDE , 請直接寫出相應(yīng)的BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=90°,AD=4,連接BD,BD⊥CD,∠ADB=∠C.若P是BC邊上一動點,則DP長的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com