【題目】如圖1,在正方形ABCD中,P是對(duì)角線BD上的點(diǎn),點(diǎn)E在AB上,且PA=PE.
(1)求證:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究∠CPE與∠ABC之間的數(shù)量關(guān)系,并說明理由.
【答案】
(1)證明:在正方形ABCD中,AB=BC,
∠ABP=∠CBP=45°,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)解:由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∵PA=PE,
∴∠PAE=∠PEA,
∴∠CPB=∠AEP,
∵∠AEP+∠PEB=180°,
∴∠PEB+∠PCB=180°,
∴∠ABC+∠EPC=180°,
∵∠ABC=90°,
∴∠EPC=90°
(3)∠ABC+∠EPC=180°,
理由:解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴∠BAP=∠BCP,
∵PA=PE,
∴∠DAP=∠DCP,
∴∠PAE=∠PEA,
∴∠CPB=∠AEP,
∵∠AEP+∠PEB=180°,
∴∠PEB+∠PCB=180°,
∴∠ABC+∠EPC=180°
【解析】(1)根據(jù)正方形的性質(zhì),四邊相等,四個(gè)角為90°,且對(duì)角線平分對(duì)角,即可證出△ABP≌△CBP(SAS),得PA=PC,由于PA=PE,得PC=PE
(2)利用全等的性質(zhì),由△ABP≌△CBP,得∠BAP=∠BCP,進(jìn)而得∠DAP=∠DCP,由PA=PE,∠PAE=∠PEA,最后通過同角的補(bǔ)角的關(guān)系得到∠ABC+∠EPC=180°,以及四邊形的內(nèi)角和為360°,∠CPF=∠EDF=90°最后得出結(jié)論
(3)此題為一二題的變式題,借助(1)和(2)證明方法第三題易證,且菱形和正方形除了每個(gè)角不是直角以為,其他的性質(zhì)都是共性,即可證出△ABP≌△CBP(SAS),得到∠BAP=∠BCP,然后根據(jù)等腰三角形的等邊對(duì)等角得∠DAP=∠DCP,最后再通過同角的補(bǔ)角關(guān)系和四邊形的內(nèi)角和為360°即可得出結(jié)論。
【考點(diǎn)精析】關(guān)于本題考查的菱形的性質(zhì)和正方形的性質(zhì),需要了解菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長的積的一半;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下各組線段為邊,能組成三角形的是( )
A. 8cm,6cm,4cm B. 2cm,4cm,6cm
C. 14cm,6cm,7cm D. 2cm,3cm,6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(﹣ )﹣1﹣ +(1﹣ )0﹣| ﹣2|
(2)[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式4x2﹣16y2的結(jié)果是( 。
A.(2x﹣4y)2
B.(2x﹣4y)(2x+4y)
C.4(x2﹣4y2)
D.4(x﹣2y)(x+2y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形AOBC,點(diǎn)A、B分別在x、y軸上,對(duì)角線AB、OC交于點(diǎn)D,點(diǎn)C( ,1),點(diǎn)M是射線OC上一動(dòng)點(diǎn).
(1)求證:△ACD是等邊三角形;
(2)若△OAM是等腰三角形,求點(diǎn)M的坐標(biāo);
(3)若N是OA上的動(dòng)點(diǎn),則MA+MN是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式,屬于二元一次方程的個(gè)數(shù)有( )
①xy+2x-y=7; ②4x+1=x-y; ③+y=5; ④x=y; ⑤x2-y2=2
⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小莉的爸爸買了某演唱會(huì)的一張門票,她和哥哥兩人都很想去觀看,可門票只有一張,讀九年級(jí)的哥哥想了一個(gè)辦法,拿了八張撲克牌,將數(shù)字為1,2,3,5的四張牌給小莉,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進(jìn)行:小莉和哥哥從各自的四張牌中隨機(jī)抽出一張,然后將抽出的兩張牌數(shù)字相加,如果和為偶數(shù),則小莉去;如果和為奇數(shù),則哥哥去.
(1)請(qǐng)用樹狀圖或列表的方法表示出兩張牌數(shù)字相加和的所有可能出現(xiàn)的結(jié)果;
(2)哥哥設(shè)計(jì)的游戲規(guī)則公平嗎?為什么?若不公平,請(qǐng)?jiān)O(shè)計(jì)一種公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo)。
(2)求出S△ABC
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△A′B′C′,在圖中畫出△ABC變化位置,并寫出A′、B′、C′的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com