【題目】在直角坐標(biāo)系中,A(0,4),C(2,0).
(1)畫出線段AC關(guān)于y軸的對稱線段AB;
(2)將線段CA繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角,得到對應(yīng)的線段CD,使得AD∥x軸,請畫出線段CD;
(3)若直線y=kx平分四邊形ABCD的面積,請求出k的值.
【答案】
(1)解:如圖,線段AB即為所求:
(2)解:如圖,線段CD即為所求:
(3)解:∵AD=BC=6,AD∥BC,
∴四邊形ABCD是平行四邊形,
∵直線y=kx平分ABCD,
∴直線y=kx過點(diǎn)(1,2),
∴k=2.
【解析】(1)先依據(jù)關(guān)于y軸對稱點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù)求得點(diǎn)C的坐標(biāo),然后,再連接AB即可得;
(2)過點(diǎn)A作射線AD∥x軸,過點(diǎn)C以CA長度為半徑作弧,交射線AD與點(diǎn)D,連接CD即可;
(3)由直線y=kx平分四邊形ABCD的面積故此直線經(jīng)過平行四邊形對角線的交點(diǎn),將該點(diǎn)的坐標(biāo)代入解析式求解即可.知
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是 米.
(2)小明在書店停留了 分鐘.
(3)本次上學(xué)途中,小明一共行駛了 米.一共用了 分鐘.
(4)我們認(rèn)為騎單車的速度超過 300 米/分就超過了安全限度.問:在整個(gè)上學(xué)途中哪個(gè)時(shí)間段小明的騎車速度最快,最快速度為多少,在安全限度內(nèi)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D、E分別是AB、BC的中點(diǎn),F在CA延長線上,∠FDA=∠B,AC=6,AB=8,則四邊形AEDF的周長為( 。
A. 16 B. 20 C. 18 D. 22
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,BC⊥CD,E是AD的中點(diǎn),連結(jié)BE并延長交CD的延長線于點(diǎn)F.
(1)請連結(jié)AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說明理由.
(2)若AB=4,BC=5,CD=6,求△BCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計(jì)的“作中邊上的高線”的尺規(guī)作圖過程.
已知:.
求作:中邊上的高線.
作法:如圖,
①以點(diǎn)為圓心,的長為半徑作弧,以點(diǎn)為圓心,的長為半徑作弧,兩弧在下方交于點(diǎn);
②連接交于點(diǎn).
所以線段是中邊上的高線.
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵ , ,
∴點(diǎn),分別在線段的垂直平分線上( )(填推理的依據(jù)).
∴垂直平分線段.
∴線段是中邊上的高線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀思考:
小迪在學(xué)習(xí)過程中,發(fā)現(xiàn)“數(shù)軸上兩點(diǎn)間的距離”可以用“表示這兩點(diǎn)數(shù)的差”來表示,探索過程如下:
如圖1所示,線段AB,BC,CD的長度可表示為:AB=3=4﹣1,BC=5=4﹣(﹣1),CD=3=(﹣1)﹣(﹣4),于是他歸納出這樣的結(jié)論:如果點(diǎn)A表示的數(shù)為a,點(diǎn)B表示的數(shù)為b,當(dāng)b>a時(shí),AB=b﹣a(較大數(shù)﹣較小數(shù)).
(2)嘗試應(yīng)用:
①如圖2所示,計(jì)算:OE= ,EF= ;
②把一條數(shù)軸在數(shù)m處對折,使表示﹣19和2019兩數(shù)的點(diǎn)恰好互相重合,則m= ;
(3)問題解決:
①如圖3所示,點(diǎn)P表示數(shù)x,點(diǎn)M表示數(shù)﹣2,點(diǎn)N表示數(shù)2x+8,且MN=4PM,求出點(diǎn)P和點(diǎn)N分別表示的數(shù);
②在上述①的條件下,是否存在點(diǎn)Q,使PQ+QN=3QM?若存在,請直接寫出點(diǎn)Q所表示的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上一點(diǎn),連接BD,使∠A=2∠1,點(diǎn)E是BC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正方體的6個(gè)面分別涂上不同的顏色,并畫上朵數(shù)不等的花,各面上的顏色與花朵數(shù)的情況如下表:
顏色 | 紅 | 黃 | 藍(lán) | 白 | 紫 | 綠 |
花朵數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
現(xiàn)將上述大小相同,顏色、花朵分布完全一樣的四個(gè)正方體拼成一個(gè)在同一平面上放置的長方體,如圖所示,那么長方體的下底面共有_____朵花.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com