【題目】在平面直角坐標系xOy中,△ABC的位置如圖所示.
(1)分別寫出以下頂點的坐標:A( , );B( , ) ;C( , ).
(2)頂點A關(guān)于x軸對稱的點A′的坐標( , ),頂點C關(guān)于y軸對稱的點C′的坐標( , ).
(3)求△ABC的面積.
【答案】⑴A(-4,3),B(3,0),C(-2,5);⑵A,(-4,-3),C,(2,5);⑶10.
【解析】
(1)根據(jù)平面直角坐標系即可求得答案.
(2)根據(jù)點關(guān)于x軸對稱的特征:橫坐標相同,縱坐標互為相反數(shù);點關(guān)于y軸對稱的特征:橫坐標互為相反數(shù),縱坐標不變;依次即可得出答案.
(3)將圖中△ABC分割成一個長方形減去三個三角形的面積即可得出答案.
(1)分別寫出△ABC各個頂點的坐標:A(-4,3),B(3,0),C(-2,5).
(2)頂點A關(guān)于x軸對稱的點A′的坐標(-4,-3),頂點C關(guān)于y軸對稱的點C′的坐標(2,5).
(3)如圖:
,,
,,
=
=
=
故△ABC的面積為10.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當點P運動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是“求作∠AOB的角平分線”的尺規(guī)作圖過程.
已知:如圖,鈍角∠AOB.求作:∠AOB的角平分線.
作法:
①在OA和OB上,分別截取OD、OE,使OD=OE;
②分別以D、E為圓心,大于的長為半徑作弧,在∠AOB內(nèi),兩弧交于點C;
③作射線OC.
所以射線OC就是所求作的∠AOB的角平分線.
在該作圖中蘊含著幾何的證明過程:
由①可得:OD=OE
由②可得:_________________
由③可知:OC=OC
∴______≌_________(依據(jù):________________________)
∴可得∠COD=∠COE(全等三角形對應角相等)
即OC就是所求作的∠AOB的角平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當x<0時,y<0;④方程ax2+bx+c=0(a≠0)有兩個大于﹣1的實數(shù)根.其中正確的結(jié)論有( )
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:①4a+b=0②9a+c>3b;③8a+7b+2c>0④若點A(﹣3,y1),點B(﹣2,y2),點C(8,y3)在該函數(shù)圖象上,則y1<y3<y2⑤若方程a(x﹣1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣l<5<x2,其中正確的結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結(jié)論中:
;;方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則.
其中正確的有
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】師徒二人各加工同樣多的零件,師父每小時加工200個,徒弟每小時加工125個.若徒弟先加工段時間之后,師父才開始工作師父工作2小時后發(fā)現(xiàn)自己加工的零件個數(shù)和徒弟加工的個數(shù)剛好相同,如圖是師徒兩人完成的零件個數(shù)之差y(個)與徒弟工作的時間x(小時)之間的函數(shù)圖象,根據(jù)圖象回答問題:
(1)求出點A的坐標,并解釋該點坐標表示的實際意義;
(2)求出線段BD的函數(shù)表達式;
(3)求徒弟這次加工的零件總數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com