【題目】如圖,在RtABC中,∠C=90°,點PAC邊上的一點,延長BP至點D,使得AD=AP,當ADAB時,過點DDEACE

(1)求證:∠CBP=ABP;

(2)ABBC=4AC=8.求AB的長度和DE的長度.

【答案】1)見詳解;(2AB=10,DE =4.

【解析】

1)要證∠CBP=ABP,只需證∠BPC=BDA即可,而題目告訴AP=AD,結論顯然;

2)設AB的長為x,則BC可用x表示,用勾股定理建立方程即可解出x即可求出AB的長度,過點PPFBA于點F,證明BCPBFP可求得BF=BC=6AF=AB-BF=4,證明PAFADE,可得DE=AF=4.

(1)∵∠C=90°,

∴∠CBP+BPC=90°,

DABA,

∴∠PBA+BDA=90°,

AD=AP,

∴∠BDA=DPA=BPC,

∴∠CBP=ABP;

(2)設AB=x,

ABBC=4,

BC=x4,

AC=8

∴在RtABC,(x4)2+64=x2,

解得:x=10,

AB=10,

過點PPFBA于點F,如圖

BCPBFP中:

BCPBFP(AAS),

BF=BC=6,

AF=4,

DEAC

∴∠EAD+ADE=90°=PAF+EAD,

∴∠PAF=ADE,

PAFADE中,

PAFADE(AAS),

DE=AF=4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm,動點P從點A開始沿邊ABB1cm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BCC2cm/s的速度移動(不與點C重合).如果P,Q分別從A,B同時出發(fā),當四邊形APQC的面積最小時,經(jīng)過的時間為(

A. 1 s B. 2 s C. 3 s D. 4 s

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.

(1)求拋物線的解析式.

(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標.

(3)如圖2,若點N在拋物線上,且NBO=ABO,則在(2)的條件下,求出所有滿足POD∽△NOB的點P的坐標(點P、O、D分別與點N、O、B對應)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)和一次函數(shù)y=k2x+b的圖象交于點M(3,﹣)和點N(﹣1,2),則k1=_____,k2=____,一次函數(shù)的圖象交x軸于點_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCDCB中,若∠ACB=∠DBC,則不能證明兩個三角形全等的條件是( )

A.ABC=∠DCBB.A=∠DC.AB=DCD.AC=DB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC△DBE均為等腰直角三角形.

(1)求證:AD=CE;

(2)求證:ADCE垂直.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,EAC的中點,AD平分∠BAC,BA:CA=2:3,ADBE相交于點O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是(  )

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

同步練習冊答案