【題目】
(1)計算:( 0﹣( 2+tan45°;
(2)解方程: =2.

【答案】
(1)解:原式=1﹣4+1=﹣2
(2)解: =2,

+ =2,

x+3=2(x﹣1),

x+3=2x﹣2,

x﹣2x=﹣3﹣2,

﹣x=﹣5,

x=5,

檢驗:把x=5代入x﹣1中,x﹣1=5﹣1=4≠0,

所以x=5是原方程的解,

∴原方程的解為:x=5


【解析】(1)本題涉及零指數(shù)冪、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪三個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.(2)首先找出最簡公分母,去分母,解出結(jié)果后,要進行檢驗.
【考點精析】通過靈活運用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì),掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點E,過點E作⊙O的切線交AC于點D,且ED⊥AC.

(1)試判斷△ABC的形狀,并說明理由;
(2)如圖2,若線段AB、DE的延長線交于點F,∠C=75°,CD=2﹣ ,求⊙O的半徑和BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.

(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.
①如圖1,若∠MON=150°,求證:△ABR為等邊三角形;
②如圖3,若△ARB∽△PEQ,求∠MON大小和 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 ,并寫出它的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是甲、乙兩個圓柱形水槽的軸截面示意圖,乙槽中有一圓柱形鐵塊立放其中(圓柱形鐵塊的下底面完全落在乙槽底面上).現(xiàn)將甲槽中的水勻速注人乙槽,甲、乙兩個水槽中水的深度y(厘米)與注水時間x(分鐘)之間的關(guān)系如圖2所示.根據(jù)圖象提供的信息,解答下列問題:
(1)圖2中折線ABC表示槽中水的深度與注水時間之間的關(guān)系,線段DE表示槽中水的深度與注水時間之間的關(guān)系(以上兩空選塡“甲”或“乙”),點B的縱坐標表示的實際意義是;
(2)注水多長時間時,甲、乙兩個水槽中水的深度相同;
(3)若乙槽底面積為36平方厘米(壁厚不計),求乙槽中鐵塊的體積;
(4)若乙槽中鐵塊的體積為112立方厘米,求甲槽底面積(壁厚不計).(直接寫成結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓與BC相切于點D,分別交AC、AB于點E、F.
(1)若AC=6,AB=10,求⊙O的半徑;
(2)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算:(a﹣ )÷
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋中裝有相同的三個小球,其上面分別標注數(shù)字1、2、3、,現(xiàn)從中任意摸出一個小球,將其上面的數(shù)字作為點M的橫坐標;將球放回袋中攪勻,再從中任意摸出一個小球,將其上面的數(shù)字作為點M的縱坐標.
(1)寫出點M坐標的所有可能的結(jié)果;
(2)求點M在直線y=x上的概率;
(3)求點M的橫坐標與縱坐標之和是偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,O為正方形ABCD的中心,分別延長OA、OD到點F、E,使OF=2OA,OE=2OD,連接EF.將△EOF繞點O逆時針旋轉(zhuǎn)α角得到△E1OF1(如圖2).
(1)探究AE1與BF1的數(shù)量關(guān)系,并給予證明;
(2)當α=30°時,求證:△AOE1為直角三角形.

查看答案和解析>>

同步練習冊答案