【題目】已知Rt△ABC,∠C=90°,AB=10,且cosA=. M為線段AB的中點, 作DM⊥AB交AC于D. 點Q在線段AC上,點P在線段BC上,以PQ為直徑的圓始終過點M, 且PQ交線段DM于點E.
⑴ 試說明△AMQ∽△PME;
⑵ 當(dāng)△PME是等腰三角形時,求出線段AQ的長.
【答案】(1)證明見解析(2)5或
【解析】(1) 連接MC ,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,得到MC=MA=AB,由同弧所對的圓周角相等推出∠A=∠EPM ,再利用同角的余角相等,即可求解; (2)分三種情況討論:當(dāng)AM=AQ時; 當(dāng)QA=QM時; 當(dāng)MQ=AM時.
⑴ 連接MC,
∵∠C=90°,M是AB中點, ∴MC=MA=,
∴∠A=∠MCA,
∵∠MCA=∠EPM, ∴∠A=∠EPM.
∵PQ為直徑 ,
∴∠PMQ=90°.
∴∠PME+∠QME =90°.
∵DM⊥AB,
∴∠AMD=90°.∴∠AMQ +∠QME =90°.
∴∠AMQ=∠PME,
∴△AMQ∽△PME
⑵AB=10,M為線段AB的中點,∴AM=5,AD===
當(dāng)△AMQ等腰三角形時,△MPE也是等腰三角形.
當(dāng)AM=AQ時,AQ=5;
當(dāng)QA=QM時,AQ=;
由題意MQ≠.
綜上所述,當(dāng)△MPE是等腰三角形時,線段AQ長為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列代數(shù)式或方程解應(yīng)用題:
已知小明的年齡是歲,小紅的年齡比小明的年齡的倍小歲,小華的年齡比小紅的年齡大歲,求這三名同學(xué)的年齡的和.
小亮與小明從學(xué)校同時出發(fā)去看在首都體育館舉行的一場足球賽, 小亮每分鐘走,他走到足球場等了分鐘比賽才開始:小明每分鐘走,他走到足球場,比賽已經(jīng)開始了分鐘.問學(xué)校與足球場之間的距離有多遠?
請根據(jù)圖中提供的信息,回答下列問題:
①一個水瓶與一個水杯分別是多少元?
②甲、乙兩家商場都銷售該水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,單獨購買的水杯仍按原價銷售.若某單位想在一家商場買個水瓶和個水杯,請問選擇哪家商場更合算?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:數(shù)軸上任意兩點之間的距離與這兩點對應(yīng)的數(shù)的關(guān)系.
(1)如果點A表示數(shù)5,將點A先向左移動4個單位長度到達點B,那么點B表示的數(shù)是 ,A、B兩點間的距離是 .
如果點A表示數(shù)﹣2,將點A向右移動5個單位長度到達點B,那么點B表示的數(shù)是 ,A、B兩點間的距離是 .
(2)發(fā)現(xiàn):在數(shù)軸上,如果點M對應(yīng)的數(shù)是m,點N對應(yīng)的數(shù)是n,那么點M與點N之間的距離可表示為 (用m、n表示,且m≥n).
(3)應(yīng)用:利用你發(fā)現(xiàn)的結(jié)論解決下列問題:數(shù)軸上表示x和﹣2的兩點P與Q之間的距離是3,則x= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以的斜邊,直角邊為邊向外作等邊和,為的中點,,相交于點.若∠BAC=30°,下列結(jié)論:①;②四邊形為平行四邊形;③;④.其中正確結(jié)論的序號是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠BCD=90°,BC=CD=2AD,E為∠BCD平分線上的點,連接BE、DE, 延長BE交CD于點F.
⑴ 求證:△BCE≌△DCE;
⑵ 若DE∥AB,求證:FD=FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;
(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間有何關(guān)系?說明理由.
(3)若點P在Rt△ABC斜邊BA的延長線上運動(CE<CD),則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的進步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機對本校部分學(xué)生進行了“你對哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)圖中信息,解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“在線討論”對應(yīng)的扇形圓心角的度數(shù);
(3)該校共有學(xué)生人,請你估計該校對在線閱讀最感興趣的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為銳角△ABC的外接圓,半徑為5.
(1)用尺規(guī)作圖作出∠BAC的平分線,并標出它與劣弧BC的交點E(保留作圖痕跡,不寫作法);
(2)若(1)中的點E到弦BC的距離為3,求弦CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com