【題目】一工地計劃租用甲、乙兩輛車清理淤泥,從運輸量來估算:若租兩輛車合運,10天可以完成任務(wù);若單獨租用乙車完成任務(wù)則比單獨租用甲車完成任務(wù)多用15天.
(1)甲、乙兩車單獨完成任務(wù)分別需要多少天?
(2)已知兩車合運共需租金65000元,甲車每天的租金比乙車每天的租金多1500元.試問:租甲乙車兩車、單獨租甲車、單獨租乙車這三種方案中,哪一種租金最少?請說明理由.

【答案】
(1)解:設(shè)甲車單獨完成任務(wù)需要x天,乙單獨完成需要y天,

由題意可得:

解得: (舍去),

經(jīng)檢驗得,x、y是原方程組的解.

即甲車單獨完成需要15天,乙車單獨完成需要30天;


(2)解:設(shè)甲車每天租金為a元,乙車每天租金為b元,

則根據(jù)兩車合運共需租金65000元,甲車每天的租金比乙車每天的租金多1500元可得:

,

解得:

①租甲乙兩車需要費用為:65000元;

②單獨租甲車的費用為:15×4000=60000元;

③單獨租乙車需要的費用為:30×2500=75000元;

綜上可得,單獨租甲車租金最少


【解析】(1)設(shè)甲車單獨完成任務(wù)需要x天,乙單獨完成需要y天,根據(jù)題意所述等量關(guān)系可得出方程組,解出即可;(2)結(jié)合(1)的結(jié)論,分別計算出三種方案各自所需的費用,然后比較即可.
【考點精析】掌握分式方程的應(yīng)用是解答本題的根本,需要知道列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗根、寫出答案(要有單位).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別是R、S,若AQ=PQ,PR=PS,下面四個結(jié)論:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正確結(jié)論的序號是 (請將所有正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式中,計算正確的是(
A.a3?a4=a12
B. =
C.(a+2)2=a2+4
D.(﹣xy)3?(﹣xy)2=xy

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對稱軸為直線x=1,有如下結(jié)論:
①c<1;
②2a+b=0;
③b2<4ac;
④若方程ax2+bx+c=0的兩根為x1 , x2 , 則x1+x2=2.
則正確的結(jié)論是( 。

A.①②
B.①③
C.②④
D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰△ABC的頂角∠A=36°(如圖).
(1)作底角∠ABC的平分線BD,交AC于點D(用尺規(guī)作圖,不寫作法,但保留作圖痕跡,然后用墨水筆加墨);
(2)通過計算說明△ABD和△BDC都是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等邊三角形,在直線AC、直線BC上分別取點D和點且AD=CE,直線BD、AE相交于點F.

(1)如圖1所示,當點D、點E分別在線段CA、BC上時,求證:BD=AE;

(2)如圖2所示,當點D、點E分別在CA、BC的延長線時,求∠BFE的度數(shù);

(3)如圖3所示,在(2)的條件下,過點CCMBD,交EF于點M,若DF:AF:AM=1:2:4,BC=12,求CE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,矩形AOCD的頂點A的坐標是(0,4),現(xiàn)有兩動點P,Q,點P從點O出發(fā)沿線段OC(不包括端點O,C)以每秒2個單位長度的速度勻速向點C運動,點Q從點C出發(fā)沿線段CD(不包括端點C,D)以每秒1個單位長度的速度勻速向點D運動.點P,Q同時出發(fā),同時停止,設(shè)運動時間為t(秒),當t=2(秒)時,PQ=2
(1)求點D的坐標,并直接寫出t的取值范圍.
(2)連接AQ并延長交x軸于點E,把AE沿AD翻折交CD延長線于點F,連接EF,則△AEF的面積S是否隨t的變化而變化?若變化,求出S與t的函數(shù)關(guān)系式;若不變化,求出S的值.
(3)在(2)的條件下,t為何值時,四邊形APQF是梯形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司員工分別住在A、B、C三個住宅區(qū),A區(qū)有25人,B區(qū)有15人,C區(qū)有10人,三個區(qū)在一條直線上,位置如圖所示,公司的接送車打算在此間只設(shè)一個?奎c,為使所有員工步行到?奎c的路程總和最少,那么?奎c的位置應(yīng)設(shè)在( 。

A. A區(qū) B. B區(qū) C. A區(qū)或B區(qū) D. C區(qū)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結(jié)EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C,試說明AD//BCAB//CD.請完成下面的推理過程,填寫理由或數(shù)學式:

∵∠1=2,1=AGH(_________)

∴∠2=AGH(________)

AD//BC(________)

∴∠ADE=C(________)

∵∠A=C(已知

∴∠ADE=_______(等量代換)

AB//CD(_______)

查看答案和解析>>

同步練習冊答案