【題目】如圖,(點(diǎn),分別與點(diǎn),對應(yīng)),,.固定不動,運(yùn)動,并滿足點(diǎn)在邊從向移動(點(diǎn)不與,重合),始終經(jīng)過點(diǎn),與邊交于點(diǎn),當(dāng)是等腰三角形時(shí),______.
【答案】 或
【解析】
首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分別從AE=EM與AM=EM去分析,注意利用全等三角形與相似三角形的性質(zhì)求解即可求得答案.
解:∵∠AEF=∠B=∠C,且∠AME>∠C,
∴∠AME>∠AEF,
∴AE≠AM;
當(dāng)AE=EM時(shí),
∵∠AEB=∠MAE+∠C,∠EMC=∠MAE+∠AEM=∠MAE+∠B=∠MAE+∠C
∴∠AEB=∠EMC
又∵∠B=∠C
∴△ABE≌△ECM,
∴CE=AB=5,
∴BE=BC-EC=6-5=1,
當(dāng)AM=EM時(shí),則∠MAE=∠MEA,
∴∠MAE+∠BAE=∠MEA+∠CEM,
即∠CAB=∠CEA,
又∵∠C=∠C,
∴△CAE∽△CBA,
∴
∴
∴.
故答案為: 或 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子張或椅子把,現(xiàn)計(jì)劃用塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗,恰好配套),設(shè)用塊板材做椅子,用塊板材做桌子,則下列方程組正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,已知線段,現(xiàn)要在該網(wǎng)格內(nèi)再確定格點(diǎn)和格點(diǎn),某數(shù)學(xué)探究小組在探究時(shí)發(fā)現(xiàn)以下結(jié)論:以下結(jié)論不正確的是( )
A.將線段平移得到線段,使四邊形為正方形的有2種;
B.將線段平移得到線段,使四邊形為菱形的(正方形除外)有3種;
C.將線段平移得到線段,使四邊形為矩形的(正方形除外)有兩種;
D.不存在以為對角線的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市中心城區(qū)居民用水實(shí)行以戶為單位的三級階梯收費(fèi)辦法:
第Ⅰ級:居民每戶每月用水不超過18噸時(shí),每噸收水費(fèi)3元;
第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標(biāo)準(zhǔn)收費(fèi),超過的部分每噸收水費(fèi)4元;
第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第Ⅰ、Ⅱ級標(biāo)準(zhǔn)收費(fèi),超過的部分每噸收水費(fèi)6元.
現(xiàn)把上述水費(fèi)階梯收費(fèi)辦法稱為方案①;假設(shè)還存在方案②:居民每戶月用水一律按照每噸4元的標(biāo)準(zhǔn)繳費(fèi).
設(shè)一戶居民月用水x噸.
(Ⅰ)根據(jù)題意填表:
(Ⅱ)設(shè)方案①應(yīng)繳水費(fèi)為元,方案②應(yīng)繳水費(fèi)為元,分別求,關(guān)于x的函數(shù)解析式;
(Ⅲ)當(dāng)時(shí),通過計(jì)算說明居民選擇哪種付費(fèi)方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店從機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售,若甲種零件每件的進(jìn)價(jià)是乙種零件每件進(jìn)價(jià)的,用1600元單獨(dú)購進(jìn)一種零件時(shí),購進(jìn)甲種零件的數(shù)量比乙種零件的數(shù)量多4件.
(1)求每件甲種零件和每件乙種零件的進(jìn)價(jià)分別為多少元?
(2)若該商店計(jì)劃購進(jìn)甲、乙兩種零件共110件,準(zhǔn)備將零件批發(fā)給零售商. 甲種零件的批發(fā)價(jià)是每件100元,乙種零件的批發(fā)價(jià)是每件130元,該商店計(jì)劃將這批產(chǎn)品全部售出從零售商處獲利不低于3000元,那么該商店最多購進(jìn)多少件甲種零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,已知點(diǎn)和點(diǎn)的坐標(biāo)分別為,,將繞點(diǎn)按順時(shí)針分別旋轉(zhuǎn),得到,,拋物線經(jīng)過點(diǎn),,;拋物線經(jīng)過點(diǎn),,.
(1)求拋物線的解析式.
(2)如果點(diǎn)是直線上方拋物線上的一個(gè)動點(diǎn).
①若 ,求點(diǎn)的坐標(biāo);
②如圖,過點(diǎn)作軸的垂線交直線于點(diǎn),交拋物線于點(diǎn),記,求與的函數(shù)關(guān)系式.當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌
粽子,每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價(jià) (元)之間的函數(shù)關(guān)系式;(4分)
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤 (元)最大?最大利潤是多少?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,經(jīng)過A、B、C三點(diǎn)的⊙O與AD相切于點(diǎn)A,經(jīng)過點(diǎn)C的切線與AD的延長線相交于點(diǎn)P,連接AC.
(1)求證:AB=AC;
(2)若AB=4,⊙O的半徑為,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在 Rt△ABC 中,∠ACB=90°,BE 平分∠ABC,D 是邊 AB 上一點(diǎn),以 BD為直徑的⊙O 經(jīng)過點(diǎn) E,且交 BC 于點(diǎn) F.
(1)求證:AC 是⊙O 的切線;
(2)若 BC=8,⊙O 的半徑為 5,求 CE 的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com