【題目】已知如下命題:①三角形的中線、角平分線、高都是線段;②三角形的三條高必交于一點(diǎn);③三角形的三條角平分線必交于一點(diǎn);④三角形的三條高必在三角形內(nèi).其中正確的是( )

A. ①② B. ①③ C. ②④ D. ③④

【答案】B

【解析】

根據(jù)三角形的中線、角平分線、高的定義對(duì)四個(gè)說(shuō)法分析判斷后利用排除法求解.

三角形的中線、角平分線、高都是線段,說(shuō)法正確;

三角形的三條高所在的直線交于一點(diǎn),三條高不一定相交,故三條高必交于一點(diǎn)的說(shuō)法錯(cuò)誤;

三條角平分線必交于一點(diǎn),說(shuō)法正確;

銳角三角形的三條高在三角形內(nèi)部;直角三角形有兩條高與直角邊重合,另一條高在三角形內(nèi)部;鈍角三角形有兩條高在三角形外部,一條高在三角形內(nèi)部.故三條高必在三角形內(nèi)的說(shuō)法錯(cuò)誤.

故選.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將△ABC紙片沿中位線EH折疊,使點(diǎn)A對(duì)稱點(diǎn)D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個(gè)三角形拼合形成一個(gè)矩形,類似地,對(duì)多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個(gè)無(wú)縫隙、無(wú)重疊的矩形,這樣的矩形稱為疊合矩形.

(1)將ABCD紙片按圖2的方式折疊成一個(gè)疊合矩形AEFG,則操作形成的折痕分別是線段_______,_________;S矩形AEFG:S□ABCD=__________

(2)ABCD紙片還可以按圖3的方式折疊成一個(gè)疊合矩形EFGH,若EF=5,EH=12,求AD的長(zhǎng);

(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請(qǐng)你幫助畫(huà)出一種疊合正方形的示意圖,并求出AD、BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(﹣3,0)、B(0,4),對(duì)OAB連續(xù)作旋轉(zhuǎn)變換,依次得到1、2、3、4,則2017的直角頂點(diǎn)的坐標(biāo)為.( 。.

A. (4032,0) B. (4032,) C. (8064,0) D. (8052, )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE∥BF∠1與∠2互補(bǔ).

1)試說(shuō)明:FG∥AB;

2)若∠CFG=60°,∠2=150°,則DEAC垂直嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,點(diǎn)D在邊BABA的延長(zhǎng)線上,過(guò)點(diǎn)DDE∥BC,交∠ABC的角平分線于點(diǎn)E.

(1)如圖1,當(dāng)點(diǎn)D在邊BA上時(shí),點(diǎn)E恰好在邊AC上,求證:∠ADE=2∠DEB;

(2)如圖2,當(dāng)點(diǎn)DBA的延長(zhǎng)線上時(shí),請(qǐng)直接寫(xiě)出∠ADE∠DEB之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工程隊(duì)(有甲、乙兩組)承接了世界園藝博覽會(huì)的一項(xiàng)小型工程任務(wù),這項(xiàng)任務(wù)規(guī)定在若干天內(nèi)完成.已知甲組單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多20天,乙組單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多10天.如果甲、乙兩組先合作15天,剩下的由甲單獨(dú)做,則正好如期完成,那么規(guī)定的時(shí)間是多少天?(列方程解應(yīng)用題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某班研究性學(xué)習(xí)小組在一次綜合實(shí)踐活動(dòng)中發(fā)現(xiàn)如下問(wèn)題:在樓底的B處測(cè)得河對(duì)岸大廈上懸掛的條幅底端D的仰角為26°,在樓頂A處測(cè)得條幅頂端C的仰角為50°.若樓AB高度為18米,條幅CD長(zhǎng)度為46米,請(qǐng)你幫助他們求出樓與大廈之間的距離BE及大廈的高度CE.(參考數(shù)據(jù):sin26°≈0.44,sin50°≈0.77,tan26°≈0.49,tan50°≈1.19).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,折疊形ABCD的一邊AD,點(diǎn)D落在BC邊上的點(diǎn)F處,AE是折痕,已知AB=8cm,BC=10cm.則CE=__cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)B、E、C、F在一條直線上,AB = DF,AC = DE,BE = CF.

求證: (1) △ABC ≌ △DFE ;

(2)連接AF、BD,求證:四邊形ABDF是平行四邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案