【題目】若一個(gè)角的補(bǔ)角是這個(gè)角的余角的4倍,則這個(gè)角的度數(shù)為________.

【答案】60°

【解析】

根據(jù)互余的兩角之和為90°,互補(bǔ)的兩角之和為180°,表示出余角和補(bǔ)角,然后列方程求解即可.

解:設(shè)這個(gè)角為x,則補(bǔ)角為(180°-x),余角為(90°-x),

由題意得,490°-x=180°-x,

解得:x=60,即這個(gè)角為60°

故答案為:60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)D在邊AB上運(yùn)動(dòng),DE平分∠CDB交邊BC于點(diǎn)E,EMBDMENDCN

(1)當(dāng)ADCD時(shí),求證DE//AC

(2)當(dāng)∠MBE與△CNE的某一個(gè)內(nèi)角相等時(shí),求AD的長(zhǎng);

(3)當(dāng)四邊形MEND與△BDE的面積相等時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是矩形ABCD的邊AD上一個(gè)動(dòng)點(diǎn),矩形的兩條邊AB、BC的長(zhǎng)分別為6和8,那么點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示0.000 010 2=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知直線y=kx+6與x軸、y軸分別交于A、B兩點(diǎn),且△ABO的面積為12.

(1)求k的值;
(2)若點(diǎn)P為直線AB的一動(dòng)點(diǎn),P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),△PAO使以O(shè)A為底的等腰三角形?求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以P、B、O、M為頂點(diǎn)組成的平行四邊形為菱形?若存在,求出點(diǎn)M坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,連接BD.

(1)如圖1,AE⊥BD于E.直接寫出∠BAE的度數(shù).

(2)如圖1,在(1)的條件下,將△AEB以A旋轉(zhuǎn)中心,沿逆時(shí)針方向旋轉(zhuǎn)30°后得到△AB′E′,AB′與BD交于M,AE′的延長(zhǎng)線與BD交于N.

①依題意補(bǔ)全圖1;

②用等式表示線段BM、DN和MN之間的數(shù)量關(guān)系,并證明.

(3)如圖2,E、F是邊BC、CD上的點(diǎn),△CEF周長(zhǎng)是正方形ABCD周長(zhǎng)的一半,AE、AF分別與BD交于M、N,寫出判斷線段BM、DN、MN之間數(shù)量關(guān)系的思路.(不必寫出完整推理過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…通過觀察,用你發(fā)現(xiàn)的規(guī)律,寫出72004的末位數(shù)字是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三邊長(zhǎng)為a、b、c,滿足a+b=10,ab=18,c=8,則此三角形為_____三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:
(1)3(x﹣2)2=x(x﹣2)
(2)x2﹣2x﹣3=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案