若拋物線y=ax2+bx+c(a≠0)的圖象與拋物線y=x2-4x+3的圖象關(guān)于y軸對(duì)稱,則函數(shù)y=ax2+bx+c的解析式為
y=x2+4x+3
y=x2+4x+3
分析:本可直接利用關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn),橫坐標(biāo)變?yōu)橄喾磾?shù),縱坐標(biāo)不變解答.
解答:解:∵拋物線y=ax2+bx+c(a≠0)的圖象與拋物線y=x2-4x+3的圖象關(guān)于y軸對(duì)稱,
∴函數(shù)y=ax2+bx+c的解析式為:y=(-x)2-4(-x)+3=x2+4x+3.
故答案為:y=x2+4x+3.
點(diǎn)評(píng):本題考查了二次函數(shù)圖象與幾何變換,明確關(guān)于y軸對(duì)稱的函數(shù)頂點(diǎn)縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點(diǎn),求此拋物線的解析式;
(3)若拋物線的對(duì)稱軸與OB交于點(diǎn)D,點(diǎn)P為線段DB上一點(diǎn),過P作y軸的平行線,交拋物線于點(diǎn)M精英家教網(wǎng).問:是否存在這樣的點(diǎn)P,使得四邊形CDPM為等腰梯形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
)
,對(duì)稱軸公式為x=-
b
2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若拋物線y=ax2+bx+c的開口向上,且經(jīng)過原點(diǎn),請(qǐng)寫出符合上述條件的一個(gè)解析式
y=x2
y=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江模擬)已知拋物線y=ax2+bx經(jīng)過點(diǎn)A(-3,-3)和點(diǎn)P(t,0),且t≠0.
(1)如圖,若A點(diǎn)恰好是拋物線的頂點(diǎn),請(qǐng)寫出它的對(duì)稱軸和t的值.
(2)若t=-4,求a、b的值,并指出此時(shí)拋物線的開口方向.
(3)若拋物線y=ax2+bx的開口向下,請(qǐng)直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•平谷區(qū)一模)如圖,在直角坐標(biāo)系中,已知直線y=
1
2
x+1
與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,以線段BC為邊向上作正方形ABCD.
(1)點(diǎn)C的坐標(biāo)為
(-3,2)
(-3,2)
,點(diǎn)D的坐標(biāo)為
(-1,3)
(-1,3)
;
(2)若拋物線y=ax2+bx+2(a≠0)經(jīng)過C、D兩點(diǎn),求該拋物線的解析式;
(3)若正方形以每秒
5
個(gè)單位長度的速度沿射線BA向上平移,直至正方形的頂點(diǎn)C落在y軸上時(shí),正方形停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,設(shè)正方形落在y軸右側(cè)部分的面積為s,求s關(guān)于平移時(shí)間t(秒)的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若拋物線y=ax2+x+1(a≠0)的頂點(diǎn)始終在x軸的上方,則a的取值范圍
a>
1
4
或a<0
a>
1
4
或a<0

查看答案和解析>>

同步練習(xí)冊(cè)答案