如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點E,點C(4,-2),點D(1,2),BC=9,sin∠ABC=數(shù)學(xué)公式
(1)求直線AB的解析式;
(2)若點H的坐標(biāo)為(-1,-1),動點G從B出發(fā),以1個單位/秒的速度沿著BC邊向C點運動(點G可以與點B或點C重合),求△HGE的面積S(S≠0)隨動點G的運動時間t′秒變化的函數(shù)關(guān)系式(寫出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)數(shù)學(xué)公式秒時,點G停止運動,此時直線GH與y軸交于點N.另一動點P開始從B出發(fā),以1個單位/秒的速度沿著梯形的各邊運動一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點P可以與梯形的各頂點重合).設(shè)動點P的運動時間為t秒,點M為直線HE上任意一點(點M不與點H重合),在點P的整個運動過程中,求出所有能使∠PHM與∠HNE相等的t的值.

解:(1)如圖1,過A作AF⊥BC.
∵C(4,-2),∴CE=4.
而BC=9,∴BE=5.
∴B(-5,-2).
∵D(1,2),∴AF=4.
∵sin∠ABC=,∴BF=3.
∴A(-2,2).
設(shè)直線AB的解析式為y=kx+b,
,∴
∴直線AB的解析式為y=

(2)如圖1,由題意:
情況一:G在線段BE上且不與點E重合.
∴GE=5-t′,
S=(5-t′)×;
情況二:G在線段CE上且不與點E重合.
∴GE=t′-5
S=(t′-5)×
情況一中的自變量的取值范圍:0≤t′<5,
情況二中的自變量的取值范圍:5<t′≤9.

(3)如圖2,
當(dāng)t′=秒時,GE=5-
∴G(-,-2),直線GH解析式為y=2x+1.
∴N(0,1).
當(dāng)點M在射線HF上時,有兩種情況:
情況一:當(dāng)點P運動至P1時,∠P1HM=∠HNE.
過點P1作平行于y軸的直線,交直線HE于點Q1,交BC于點R.
由BP1=t,sin∠ABC=,可得BR=,P1R=
∴RE=Q1R=5-,
∴P1Q1=5-
∴Q1H=
由△P1Q1H∽△HEN得
∴t1=
∴當(dāng)t1=時,∠P1HM=∠HNE;
情況二:當(dāng)點P運動至點P2時,
設(shè)直線P2H與x軸交于點T,直線HE與x交于點Q2
此時,△Q2TH∽△EHN
解得
∴直線HT的解析式為y=-3x-4,此時直線HT恰好經(jīng)過點A(-2,2).
∴點P2與點A重合,即BP2=5,
∴t2=5.
∴當(dāng)t2=5秒時,∠P2HM=∠HNE;
若點M在射線HE上時(點M記為點M1),有兩種情況:
情況三:當(dāng)點P運動至點P3時,∠P3HM1=∠HNE.
過點P3作平行于y軸的直線P3Q3,交直線HE于點Q3,可用求點P1同樣的方法.
∴t3=15.
∴當(dāng)t3=15秒時,∠P3HM1=∠HNE;
情況四:當(dāng)點P運動至P4時,∠P4HM1=∠HNE.
可得△P4HE≌△THQ2,∴P4E=TQ2=.∴t4=
∴當(dāng)t4=秒時,∠P4HM2=∠HNE.
綜上所述:當(dāng)t=秒或t=5秒或t=15秒或t=秒時,∠PHM=∠HNE.
分析:(1)作AF⊥BC.已知點C的坐標(biāo)可求出BC=9,CE=4,BE=5,又知道點B,C的坐標(biāo)然后利用三角函數(shù)可求出點A的坐標(biāo).
設(shè)直線AB的解析式為y=kx+b,把已知坐標(biāo)代入可求出解析式.
(2)本題要分兩種情況討論:首先當(dāng)G在線段BE上且不與點E重合,可得GE=5-t′,S=(5-t′)×1×;
當(dāng)G在線段CE上且不與點E重合,這時候GE=t′-5,S=(t′-5)×,分別求出自變量的取值范圍即可.
(3)如圖可求出GE的長與點G的坐標(biāo)后可得點N的坐標(biāo).當(dāng)點M在射線HF上時,分四種情況討論:
當(dāng)點P運動至P1時,∠P1HM=∠HNE.過點P1作平行于y軸的直線,證明△P1Q1H∽△HEN得,然后求出t1的值;
當(dāng)點P運動至點P2時,∠P2HN=∠HNE.設(shè)直線P2H與x軸交于點T,直線HE與x交于點Q2.可得△Q2TH∽△EHN,利用解得Q2T的長以及點T的坐標(biāo).求出直線HT的解析式后求出t2的值;
當(dāng)點P運動至點P3時,∠P3HM1=∠HNE.過點P3作平行于y軸的直線P3Q3,交直線HE于點Q3,同1求出t的坐標(biāo);
當(dāng)點P運動至P4時,∠P4HM1=∠HNE.求證△P4HE≌△THQ2,求出t的值.
點評:本題考查的是一次函數(shù)的綜合運用以及分段函數(shù)的運用,本題難度較大,考生應(yīng)注意全面分析題目求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點E,點C(4,-2),點D(1,2),BC=9,sin∠ABC=
45

(1)求直線AB的解析式;
(2)若點H的坐標(biāo)為(-1,-1),動點G從B出發(fā),以1個單位/秒的速度沿著BC邊向C點運動(點G可以與點B或點C重合),求△HGE的面積S(S≠0)隨動點G的運動時間t′秒變化的函數(shù)關(guān)系式(寫出自變量t′的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點E,點C(4,-2),點D(1,2),BC=9,sin∠ABC=
4
5

(1)求直線AB的解析式;
(2)若點H的坐標(biāo)為(-1,-1),動點G從B出發(fā),以1個單位/秒的速度沿著BC邊向C點運動(點G可以與點B或點C重合),求△HGE的面積S(S≠0)隨動點G的運動時間t′秒變化的函數(shù)關(guān)系式(寫出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)t′=
7
2
秒時,點G停止運動,此時直線GH與y軸交于點N.另一動點P開始從B出發(fā),以1個單位/秒的速度沿著梯形的各邊運動一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點P可以與梯形的各頂點重合).設(shè)動點P的運動時間為t秒,點M為直線HE上任意一點(點M不與點H重合),在點P的整個運動過程中,求出所有能使∠PHM與∠HNE相等的t的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省鄂州市石山中學(xué)中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點E,點C(4,-2),點D(1,2),BC=9,sin∠ABC=
(1)求直線AB的解析式;
(2)若點H的坐標(biāo)為(-1,-1),動點G從B出發(fā),以1個單位/秒的速度沿著BC邊向C點運動(點G可以與點B或點C重合),求△HGE的面積S(S≠0)隨動點G的運動時間t′秒變化的函數(shù)關(guān)系式(寫出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)秒時,點G停止運動,此時直線GH與y軸交于點N.另一動點P開始從B出發(fā),以1個單位/秒的速度沿著梯形的各邊運動一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點P可以與梯形的各頂點重合).設(shè)動點P的運動時間為t秒,點M為直線HE上任意一點(點M不與點H重合),在點P的整個運動過程中,求出所有能使∠PHM與∠HNE相等的t的值.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•哈爾濱)如圖,梯形ABCD在平面直角坐標(biāo)系中,上底AD平行于x軸,下底BC交y軸于點E,點C(4,-2),點D(1,2),BC=9,sin∠ABC=
(1)求直線AB的解析式;
(2)若點H的坐標(biāo)為(-1,-1),動點G從B出發(fā),以1個單位/秒的速度沿著BC邊向C點運動(點G可以與點B或點C重合),求△HGE的面積S(S≠0)隨動點G的運動時間t′秒變化的函數(shù)關(guān)系式(寫出自變量t′的取值范圍);
(3)在(2)的條件下,當(dāng)秒時,點G停止運動,此時直線GH與y軸交于點N.另一動點P開始從B出發(fā),以1個單位/秒的速度沿著梯形的各邊運動一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(點P可以與梯形的各頂點重合).設(shè)動點P的運動時間為t秒,點M為直線HE上任意一點(點M不與點H重合),在點P的整個運動過程中,求出所有能使∠PHM與∠HNE相等的t的值.


查看答案和解析>>

同步練習(xí)冊答案