如圖,矩形OABC的長OA=,寬OC=1,將△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P點(diǎn)坐標(biāo)為______
【答案】分析:(1)在直角△OAC中,根據(jù)三角函數(shù)就可以求出∠CAO的度數(shù),以及∠OCA的度數(shù).而∠PCA=∠OCA,∠BCA=∠CAO,則∠PCB就可以求出.在直角△PCG中,根據(jù)三角函數(shù)可以求得CG,PG的長,從而得到P的坐標(biāo).
(2)P、A兩點(diǎn)的坐標(biāo)容易得到,根據(jù)待定系數(shù)法就可以求出拋物線的解析式.求出b,c的值.C點(diǎn)的坐標(biāo)已知,代入函數(shù)的解析式,就可以判斷是否在函數(shù)的圖象上.
(3)根據(jù)點(diǎn)P及點(diǎn)C的坐標(biāo)可得出直線PC的解析式,這樣可得出k的值,再由此直線與有且只有一個(gè)交點(diǎn),利用根的判別式可得出m的值.
(4)過點(diǎn)M作MF⊥x軸分別交CP、CB和x軸于E、N和F,過點(diǎn)P作PG⊥x軸交CB于G,根據(jù)S△CMP=s△CME+S△PME,四邊形MCAP的面積就可以表示成OF的函數(shù),利用函數(shù)的性質(zhì),就可以求出最值.
解答:解:(1)過點(diǎn)P作PG⊥x軸交CB于G.
tan∠CAO==,
∴∠CAO=30°,
∴PCA=60°,
又∵∠ACB=30°,
∴∠PCB=30°,
在RT△PCM中,PG=PC=OC=,GC=,
∴點(diǎn)P的坐標(biāo)為(,).
綜上可得:∠PCB=30°,P點(diǎn)坐標(biāo)為().

(2)把P與A分別代入,
解得:,c=1,
,

(3)由P,C(0,1)可得直線CP:,
∵直線y=kx+m平行于CP,

只有一個(gè)交點(diǎn),
有兩個(gè)相同的實(shí)數(shù)根,
解得:;…(3分)

(4)假設(shè)存在這樣的點(diǎn)M,使得四邊形MCAP的面積最大.
∵△ACP面積為定值,
∴要使四邊形MCAP的面積最大,只需使△PCM的面積最大.
過點(diǎn)M作MF⊥x軸分別交CP、CB和x軸于E、N和F,過點(diǎn)P作PG⊥x軸交CB于G.

S△CMP=s△CME+S△PME=ME•CG=ME
設(shè)M(x,y),
∵∠ECN=30°,CN=x
∴EN=x
∴ME=MF-EF=-x2+x
∴S△CMP=-x2+x
∵a=-<0,
∴S有最大值.
當(dāng)x=時(shí),S的最大值是
∵S△MCAP=S△CPM+S△ACP
∴四邊形MCAP的面積的最大值為
此時(shí)M點(diǎn)的坐標(biāo)為( ,
所以存在這樣的點(diǎn)M( ,),使得四邊形MCAP的面積最大,其最大值為
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)的解析式、翻折變換及二次函數(shù)最值問題,是一道難度較大的綜合題,注意掌握最值問題基本的解決思路是轉(zhuǎn)化為函數(shù)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點(diǎn)0、B的坐標(biāo)分別是O(0,0)、B(8,4),頂點(diǎn)A在x軸上,頂點(diǎn)C在y軸上,把△OAB沿OB翻折,使點(diǎn)A落在點(diǎn)D的位置,BD與OA交于E.
①求證:OE=EB;
②求OE、DE的長度;
③求直線BD的解析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC的邊OA、OC在坐標(biāo)軸上,經(jīng)過點(diǎn)B的雙曲線的解析式為y=
k
x
(x
<0),M為OC上一點(diǎn),且CM=2OM,N為BC的中點(diǎn),BM與AN交于點(diǎn)E,若四邊形EMCN的面積為
13
4
,則k=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點(diǎn)在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說明點(diǎn)C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點(diǎn)D,與x軸相交于另外一點(diǎn)E,若點(diǎn)M是x軸上的點(diǎn),N是y軸上的點(diǎn),以點(diǎn)E、M、D、N為頂點(diǎn)的四邊形是平行四邊形,試求點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•樊城區(qū)模擬)已知如圖,矩形OABC的長OA=2
3
,寬OC=2,將△AOC沿AC翻折得△AFC.
(1)求點(diǎn)F的坐標(biāo);
(2)求過A、F、C三點(diǎn)的拋物線解析式;
(3)在拋物線上是否存在一點(diǎn)P,使得△ACP為以A為直角頂點(diǎn)的直角三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點(diǎn)坐標(biāo)分別是(0,0),(4,0),(4,1),(0,1),在矩形OABC的內(nèi)部任取一點(diǎn)(x,y),則x<y的概率是
 

查看答案和解析>>

同步練習(xí)冊答案