【題目】綜合與實(shí)踐

觀察猜想

如圖1,有公共直角頂點(diǎn)的兩個不全等的等腰直角三角尺疊放在一起,點(diǎn)上,點(diǎn).

1)在圖1中,你發(fā)現(xiàn)線段的數(shù)量關(guān)系是___________,直線,的位置關(guān)系是________.

操作發(fā)現(xiàn)

2)將圖1中的繞點(diǎn)逆時針旋轉(zhuǎn)一個銳角得到圖2,這時(1)中的兩個結(jié)論是否成立?作出判斷并說明理由;

拓廣探索

3)如圖3,若只把有公共直角頂點(diǎn)的兩個不全等的等腰直角三角尺改為有公共頂角為(銳角)的兩個不全等等腰三角形,繞點(diǎn)逆時針旋轉(zhuǎn)任意一個銳角,這時(1)中的兩個結(jié)論仍然成立嗎?作出判斷,不必說明理由.

【答案】1;(2)將圖1中的繞點(diǎn)逆時針旋轉(zhuǎn)一個銳角時,兩個結(jié)論成立.理由見解析;(3)結(jié)論成立;結(jié)論不成立.

【解析】

1)根據(jù)△ABC和△ADE是等腰直角三角形,得到AB=AC,AD=AE,∠A=90°,即可得出結(jié)論;

2)由旋轉(zhuǎn)的性質(zhì)得到∠DAB=EAC.根據(jù)SAS證明△ABD≌△ACE,根據(jù)全等三角形的對應(yīng)邊相等得出BD=CE.延長DB,交CE于點(diǎn)F,交AE于點(diǎn)O.由全等三角形對應(yīng)角相等得到∠ADB=AEC.根據(jù)三角形內(nèi)角和定理和對頂角相等,得到∠OFE=OAD=90°,即可得出結(jié)論.

3)類似(2)可得BD=CE成立,BDCE不成立.

1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠A=90°,∴BD=CE,BDCE

故答案為:BD=CEBDCE

2)將圖1中的△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)一個銳角時,兩個結(jié)論成立.理由如下:

由旋轉(zhuǎn)得:∠DAB=EAC

又∵AB=AC,AD=AE,

∴△ABD≌△ACESAS).

BD=CE

如圖,延長DB,交CE于點(diǎn)F,交AE于點(diǎn)O

∵△ABD≌△ACE,

∴∠ADB=AEC

∵∠AOD=EOF

∴∠OFE=OAD

∵∠OAD=90°,

∴∠DFE=90°,即BDCE

3)結(jié)論BD=CE成立,結(jié)論BDCE不成立.理由如下:

由旋轉(zhuǎn)得:∠DAE=BAC,

∴∠DAB=EAC

又∵AB=ACAD=AE,

∴△ABD≌△ACESAS).

BD=CE

延長DBCEMBDAE交于點(diǎn)N

∵△ABD≌△ACE,∴∠MEA=BDA

∵∠ENM=DNA,∴∠EMN=EAD

∵∠EAD90°,∴∠EMN90°,∴BDCE不成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.

1)從袋中隨機(jī)摸出一個球,記錄其顏色,然后放回,攪勻,大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.2,求n的值;

2)若,小明兩次摸球(摸出一球后,不放回,再摸出一球),請用樹狀圖畫出小明摸球的所有結(jié)果,并求出兩次摸出不同顏色球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,∠ACB90°,點(diǎn)A在反比例函數(shù)y=﹣的圖象上,點(diǎn)B、C都在反比例函數(shù)y=﹣的圖象上,ABx軸,則點(diǎn)A的坐標(biāo)為(

A.(,2)B.()C.(,)D.(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yax2x+c與直線yx+交于A、B兩點(diǎn),已知點(diǎn)B的橫坐標(biāo)是4,直線yx+x、y軸的交點(diǎn)分別為A、C,點(diǎn)P是拋物線上一動點(diǎn).

1)求拋物線的解析式;

2)若點(diǎn)P在直線yx+下方,求△PAC的最大面積;

3)設(shè)M是拋物線對稱軸上的一點(diǎn),以點(diǎn)A、B、P、M為頂點(diǎn)的四邊形能否成為平行四邊形?若能,求出點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,的弦,且,交于點(diǎn),連接,若,則的度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某區(qū)八年級學(xué)生的睡眠情況,隨機(jī)抽取了該區(qū)八年級學(xué)生部分學(xué)生進(jìn)行調(diào)查.已知D組的學(xué)生有15人,利用抽樣所得的數(shù)據(jù)繪制所示的統(tǒng)計圖表.

一、學(xué)生睡眠情況分組表(單位:小時)

組別

睡眠時間

二、學(xué)生睡眠情況統(tǒng)計圖

根據(jù)圖表提供的信息,回答下列問題:

1)試求八年級學(xué)生睡眠情況統(tǒng)計圖中的a的值及a對應(yīng)的扇形的圓心角度數(shù);

2)如果睡眠時間x(時)滿足:,稱睡眠時間合格.已知該區(qū)八年級學(xué)生有3250人,試估計該區(qū)八年級學(xué)生睡眠時間合格的共有多少人?

3)如果將各組別學(xué)生睡眠情況分組的最小值(如C組別中,取),B、C、D三組學(xué)生的平均睡眠時間作為八年級學(xué)生的睡眠時間的依據(jù).試求該區(qū)八年級學(xué)生的平均睡眠時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛轎車從甲地駛往乙地,到達(dá)乙地后返回甲地,速度是原來的1.5倍,共用t小時;一輛貨車同時從甲地駛往乙地,到達(dá)乙地后停止.兩車同時出發(fā),勻速行駛.設(shè)轎車行駛的時間為xh),兩車到甲地的距離為ykm),兩車行駛過程中yx之間的函數(shù)圖象如圖.

1)求轎車從乙地返回甲地時的速度和t的值;

2)求轎車從乙地返回甲地時yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)直接寫出轎車從乙地返回甲地時與貨車相遇的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量小島A到公路BD的距離,先在點(diǎn)B處測得∠ABD37°,再沿BD方向前進(jìn)150m到達(dá)點(diǎn)C,測得∠ACD45°,求小島A到公路BD的距離.(參考數(shù)據(jù):sin37°≈0.60cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一條直線過點(diǎn)(0,4),且與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.

(1)求這條直線的解析式及點(diǎn)B的坐標(biāo);

(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;

(3)過線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案