如果等腰三角形的底與腰的比為0.618,則我們稱之為:黃金三角形:請你作出一個黃金三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時,應(yīng)符合下面四個條件:①“正度”的值是非負數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個等腰三角形相似時,它們的底角相等,顯然,它們的“正度”|sinα-
3
2
|
也相等,當(dāng)α=60°時,|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因為此時正三角形的正度是1!
解答下列問題:
甲同學(xué)認(rèn)為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認(rèn)為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教網(wǎng)(1)他們的說法合理嗎?為什么?
(2)對你認(rèn)為不合理的方案加以改進,使其合理;
(3)請你再給出一種衡量等腰三角形“正度”的合理的表達式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西寧)如圖,矩形的長和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點所在的直線自右向左勻速運動至等腰三角形的底與另一寬重合.設(shè)矩形與等腰三角形重疊部分(陰影部分)的面積為y,重疊部分圖形的高為x,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖,矩形的長和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點所在的直線自右向左勻速運動至等腰三角形的底與另一寬重合.設(shè)矩形與等腰三角形重疊部分(陰影部分)的面積為y,重疊部分圖形的高為x,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為

A.       B.       C.        D.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,矩形的長和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點所在的直線自右向左勻速運動至等腰三角形的底與另一寬重合.設(shè)矩形與等腰三角形重疊部分(陰影部分)的面積為y,重疊部分圖形的高為x,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

同步練習(xí)冊答案