【題目】甲、乙兩個芭蕾舞團演員的身高(單位:cm)如下表:
兩組芭蕾舞團演員身高的方差較小的是______.(填“甲”或“乙”)
【答案】甲
【解析】
先算出兩組數(shù)據(jù)的平均數(shù),再計算兩組數(shù)據(jù)的方差.
解:甲組演員身高的平均數(shù)為:(164×2+165×2+166×2+167×2)=165.5,
乙組演員身高的平均數(shù)為:(163×2+165×2+166×2+168×2)=165.5,
∵S2甲=[(164165.5)2+(164165.5)2+(165165.5)2+(165165.5)2+(166165.5)2+(166165.5)2+(167165.5)2+(167165.5)2]
=(2.25+2.25+0.25+0.25+0.25+0.25+2.25+2.25)
=1.25;
S2乙=[(163165.5)2+(163165.5)2+(165165.5)2+(165165.5)2+(166165.5)2+(166165.5)2+(168165.5)2+(168165.5)2]
=18(6.25+6.25+0.25+0.25+0.25+0.25+6.25+6.25)
=3.25;
∴甲組芭蕾舞團演員身高的方差較小,
故答案為:甲.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,點為軸正半軸上一點,且,的面積是,則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,C為⊙O上一點,OC=4,∠OAC=60°.
(Ⅰ)如圖①,過點C作⊙O的切線,與BA的延長線交于點P,求∠P的大小;
(Ⅱ)如圖②,P為AB上一點,CP延長線與⊙O交于點Q.若AQ=CQ,求∠APC的大小及PA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組為了解本校七年級女生的身高情況,統(tǒng)計了甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.(身高單位:)
請根據(jù)圖中信息,解答下列問題:
(1)兩個班共有女生 人;
(2)將頻數(shù)分布直方圖補充完整;
(3)求扇形統(tǒng)計圖中部分所對應(yīng)的扇形圓心角度數(shù);
(4)該校七年級共有女生人,請估計身高在范圍的女生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,,點是對角線上一動點,將線段繞點順時針旋轉(zhuǎn)120°到,連接,連接并延長,分別交于點.
(1)求證:;
(2)已知,若的最小值為,求菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線與x軸交于點A,與y軸交于點B,直線與x軸交于點C.
(1)求點B的坐標;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為G.
①當時,結(jié)合函數(shù)圖象,求區(qū)域G內(nèi)整點的個數(shù);
②若區(qū)域G內(nèi)恰有2個整點,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年初,新冠肺炎肆虐全球.我國政府和人民采取了積極有效的防疫措施,疫情在我國得到了有效控制.小明為復(fù)學(xué)到藥店購買口罩和一次性醫(yī)用口罩.已知購買個口罩和個一次性醫(yī)用口罩共需元;購買個口罩和個一次性醫(yī)用罩共需元.
(1)求口罩與一次性醫(yī)用口罩的單價;
(2)小明準備購買口罩和一次性醫(yī)用口罩共個,且口罩的數(shù)量不少于一次性醫(yī)用口罩數(shù)量的.請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點C在線段AB上,(點C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點P.
(觀察猜想)
①AE與BD的數(shù)量關(guān)系是 ;
②∠APD的度數(shù)為 .
(數(shù)學(xué)思考)
如圖2,當點C在線段AB外時,(1)中的結(jié)論①、②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;
(拓展應(yīng)用)
如圖3,點E為四邊形ABCD內(nèi)一點,且滿足∠AED=∠BEC=90°,AE=DE,BE=CE,對角線AC、BD交于點P,AC=10,則四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點O是正方形ABCD兩對角線的交點. 分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)角(0°< <360°)得到正方形,如圖2.
①在旋轉(zhuǎn)過程中,當∠是直角時,求的度數(shù);(注明:當直角邊為斜邊一半時,這條直角邊所對的銳角為30度)
②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求長的最大值和此時的度數(shù),直接寫出結(jié)果不必說明理由.
圖1 圖2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com