對(duì)于一元二次方程ax2+bx+c=0(a≠0),下列說(shuō)法:①若a、c為異號(hào),方程一定有實(shí)根;②若方程有一根為x0,則b2-4ac=(2ax0+b)2;③若b2-ac<0,方程一定無(wú)實(shí)根.正確的個(gè)數(shù)有( 。
A、0B、1C、2D、3
分析:判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號(hào)就可以了
解答:解:①∵a、c為異號(hào),
∴ac<0,
∴△=b2-4ac>0
∴方程一定有實(shí)根;
故①正確;
②若x0是一元二次方程ax2+bx+c=0的根,可得x0=
-b±
b2-4ac
2a

把x0的值代入(2ax0+b)2,可得b2-4ac=(2ax0+b)2,
故②正確;
③∵b2-ac<0,
∴b2-4ac<0
∴方程一定無(wú)實(shí)根,
∴③正確.
故選D.
點(diǎn)評(píng):此題主要考查了根的判別式及其應(yīng)用.總結(jié):一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;
(3)△<0?方程沒(méi)有實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:三點(diǎn)一測(cè)叢書(shū) 九年級(jí)數(shù)學(xué) 上。ńK版課標(biāo)本) 江蘇版課標(biāo)本 題型:044

有一根為1的一元二次方程

對(duì)于關(guān)于x的一元二次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的兩個(gè)根分別為x1=1,x2.說(shuō)明如下:

由于a+b+c=0,則c=-a-b

將c=-a-b代入原方程,得ax2+bx-a-b=0.

即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

解得x1=1,x2

請(qǐng)利用上面推導(dǎo)出來(lái)的結(jié)論,快速求解下列方程:

(1)3x2-5x+2=0,x1=________,x2=________;

(2)7x2-4x-3=0,x1=________,x2=________;

(3)13x2+7x-20=0,x1=________,x2=________;

(4)x2-(+1)x+=0,x1=________,x2=________;

(5)2004x2-2003x-1=0,x1=________,x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),x1=________,x2=________;

(7)請(qǐng)你寫出3個(gè)一元二次方程,使它們都有一個(gè)根是1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:三點(diǎn)一測(cè)叢書(shū)九年級(jí)數(shù)學(xué)上 題型:022

有一根為1的一元二次方程

  對(duì)于關(guān)于x的一元一次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的兩個(gè)根分別為x1=1,x2.說(shuō)明如下:

  由于a+b+c=0,則c=-a-b

  將c=-a-b代入原方程,得ax2+bx-a-b=0.

  即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

  解得x1=1,x2

請(qǐng)利用上面推導(dǎo)出來(lái)的結(jié)論,快速求解下列方程:

(1)3x2-5x+2=0,       (2)7x2-4x-3=0,

x1=________,x2=________;  x1=________,x2=________;

(3)13x2+7x-20=0,      (4)x2-(+1)x+=0,

x1=________,x2=________;  x1=________,x2=________;

(5)2004x2-2003x2-1=0,x1=________;x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),

x1=________,x2=________.

(7)請(qǐng)你寫出3個(gè)一元二次方程,使它們都有一個(gè)根是1.

查看答案和解析>>

同步練習(xí)冊(cè)答案