【題目】如圖,已知拋物線y=ax+2)(x-4)(a為常數(shù),且a0)與x軸從左至右依次交于AB兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線y=-x+b與拋物線的另一交點(diǎn)為D,且點(diǎn)D的橫坐標(biāo)為-5

1)求拋物線的函數(shù)表達(dá)式;

2P為直線BD下方的拋物線上的一點(diǎn),連接PD、PB,求△PBD面積的最大值;

3)設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少?

【答案】1;(2;(3)(-2,2

【解析】

1)首先求出點(diǎn)A、B坐標(biāo),然后求出直線BD的解析式,求得點(diǎn)D坐標(biāo),代入拋物線解析式,求得a的值;

2)用三角形的面積公式建立函數(shù)關(guān)系式,再確定出最大值;

3)由題意,動(dòng)點(diǎn)M運(yùn)動(dòng)的路徑為折線AF+DF,運(yùn)動(dòng)時(shí)間:t=AF+DF.如圖,作輔助線,將AF+DF轉(zhuǎn)化為AF+FG;再由垂線段最短,得到垂線段AH與直線BD的交點(diǎn),即為所求的F點(diǎn).

1)拋物線y=ax+2)(x-4),令y=0,解得x=-2x=4,

A-2,0),B40).

∵直線y=-x+b經(jīng)過(guò)點(diǎn)B4,0),

-×4+b=0,解得b=

∴直線BD解析式為:y=-x+,

當(dāng)x=-5時(shí),y=3

D-5,3),

∵點(diǎn)D-5,3)在拋物線y=ax+2)(x-4)上,

a-5+2)(-5-4=3,

a=

∴拋物線的函數(shù)表達(dá)式為:y=x2-x-

2)設(shè)Pmm2-m-

SBPD=×9[(-m+-m2-m-]

=-m2-m+10

=-m+2+

∴△BPD面積的最大值為;

3)如圖,

DKAB,AHDKAH交直線BD于點(diǎn)F,

∵由(2)得,DN=3,BN=9,

∵∠DBA=30°,

∴∠BDH=30°,

∴FG=DF×sin30°=FD

∴當(dāng)且僅當(dāng)AHDK時(shí),AF+FH最小,

點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)為:t=AF+FD=AF+FH

lBDy=-x+,

Fx=Ax=-2,F-2,2

∴當(dāng)F坐標(biāo)為(-2,2)時(shí),用時(shí)最少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象分別交于M,N兩點(diǎn),已知點(diǎn)M(-2,m).

(1)求反比例函數(shù)的表達(dá)式;

(2)點(diǎn)Py軸上的一點(diǎn),當(dāng)∠MPN為直角時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,AHBC,點(diǎn)EAH上一點(diǎn),延長(zhǎng)AH至點(diǎn)F,使FH=EH.

(1)求證:四邊形EBFC是菱形;

(2)如果∠BAC=ECF,求證:ACCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB、AC上,設(shè)EG=x mmEF=y mm

1)寫(xiě)出xy的關(guān)系式;

2)用S表示矩形EGHF的面積,某同學(xué)說(shuō)當(dāng)矩形EGHF為正方形時(shí)S最大,這個(gè)說(shuō)法正確嗎?說(shuō)明理由,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC, ,,,直線l從與AC重合的位置開(kāi)始以每秒個(gè)單位的速度沿CB方向平行移動(dòng),且分別與CBAB邊交于D,E兩點(diǎn),動(dòng)點(diǎn)FA開(kāi)始沿折線ACCBBA運(yùn)動(dòng),點(diǎn)FAC,CBBA邊上運(yùn)動(dòng)的速度分別為每秒3,4,5個(gè)單位,點(diǎn)F與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)F第一次回到點(diǎn)A時(shí),點(diǎn)F與直線 l同時(shí)停止運(yùn)動(dòng).運(yùn)動(dòng)過(guò)程中,作點(diǎn)F關(guān)于直線DE的對(duì)稱(chēng)點(diǎn),記為點(diǎn),若形成的四邊形 為菱形,則所有滿足條件的之和為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1y=﹣x與反比例函數(shù)y的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2

1)求反比例函數(shù)的表達(dá)式;

2)根據(jù)圖象直接寫(xiě)出﹣x的解集;

3)將直線l1y=- x沿y向上平移后的直線l2與反比例函數(shù)y在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,EAC邊上的一點(diǎn),且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙OAC于點(diǎn)D,交BE于點(diǎn)F

1)求證:BC⊙O的切線;

2)若AB=8,BC=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:

①該產(chǎn)品90天內(nèi)日銷(xiāo)售量(m件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

時(shí)間(第x天)

1

3

6

10

日銷(xiāo)售量(m件)

198

194

188

180

②該產(chǎn)品90天內(nèi)每天的銷(xiāo)售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:

時(shí)間(第x天)

1≤x<50

50≤x≤90

銷(xiāo)售價(jià)格(元/件)

x+60

100

(1)求m關(guān)于x的一次函數(shù)表達(dá)式;

(2)設(shè)銷(xiāo)售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?【提示:每天銷(xiāo)售利潤(rùn)=日銷(xiāo)售量×(每件銷(xiāo)售價(jià)格-每件成本)】

(3)在該產(chǎn)品銷(xiāo)售的過(guò)程中,共有多少天銷(xiāo)售利潤(rùn)不低于5400元,請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(數(shù)學(xué)概念)

若等邊三角形的三個(gè)頂點(diǎn)D、EF分別在ABC的三條邊上,我們稱(chēng)等邊三角形DEFABC的內(nèi)接正三角形

(概念辨析)

(1)下列圖中DEF均為等邊三角形,則滿足DEFABC的內(nèi)接正三角形的是

A.    B.

C.

(操作驗(yàn)證)

(2)如圖.在ABC,∠B=60°,D為邊AB上一定點(diǎn)BCBD),DEDB,EM平分DEC交邊AC于點(diǎn)M,DME的外接圓與邊BC的另一個(gè)交點(diǎn)為N

求證DMNABC的內(nèi)接正三角形

(知識(shí)應(yīng)用)

(3)如圖.在ABC,∠B=60°,∠A=45°,BC=2,D是邊AB上的動(dòng)點(diǎn),若邊BC上存在一點(diǎn)E,使得以DE為邊的等邊三角形DEFABC的內(nèi)接正三角形.設(shè)DEF的外接圓O與邊BC的另一個(gè)交點(diǎn)為K,DK的最大值為 ,最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案