如圖,已知二次函數(shù)y=ax2+bx+8(a≠0)的圖像與x軸交于點(diǎn)A(-2,0),B,
與y軸交于點(diǎn)C,tan∠ABC=2.
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)設(shè)直線CD交x軸于點(diǎn)E.在線段OB的垂直平分線上是否存在點(diǎn)P,使得經(jīng)過點(diǎn)P的直線PM垂直于直線CD,且與直線OP的夾角為75°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,將拋物線沿其對(duì)稱軸向上平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線最多可以向上平移多少個(gè)單位長度?
解:(1)依題意,可知 C(0,8),則B(4,0)
將A(-2,0),B(4,0)代入y=ax2+bx+8,
解得
配方得y,頂點(diǎn)D(1,9). ---------3分
(2)假設(shè)滿足條件的點(diǎn)存在,依題意設(shè)
由求得直線的解析式為,
它與軸的夾角為.
過點(diǎn)P作PN⊥y軸于點(diǎn)N.
依題意知,∠NPO=30°或∠NPO=60°.
∵PN=2,∴ON= 或2.
∴存在滿足條件的點(diǎn),的坐標(biāo)為(2, )和(2,2).-----------6分
(3)由上求得.
當(dāng)拋物線向上平移時(shí),可設(shè)解析式為.
當(dāng)時(shí),.
當(dāng)時(shí),.
或.
由題意可得m的范圍為.
∴ 拋物線最多可向上平移72個(gè)單位. -----------8分
解析:略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
5 |
2 |
13 |
4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com