年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:伴你學(xué)·數(shù)學(xué)·九年級(jí)·下冊(cè) 題型:044
某化工材料經(jīng)銷公司以30元/千克的進(jìn)價(jià)購(gòu)進(jìn)一種化工原料,物價(jià)部門核定其銷售單價(jià)不得高于70元/千克,也不得低于30元/千克.市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)定為70元/千克時(shí),日均銷售60千克;單價(jià)每降低1元/千克,日均多售出2千克.在銷售過程中,每天還要支出其他費(fèi)用500元(天數(shù)不足一天時(shí),按整天計(jì)算).設(shè)銷售單價(jià)為x元/千克,日均獲利為y元.
(1)求y與x之間的函數(shù)關(guān)系式,并注明x的取值范圍;
(2)y是x的二次函數(shù)嗎?如果是,請(qǐng)將表達(dá)式配方成y=的形式,寫出頂點(diǎn)坐標(biāo),并在直角坐標(biāo)系中畫出草圖;根據(jù)圖象指出單價(jià)定為多少元時(shí)日均獲利最多是多少.
(3)如果該公司購(gòu)進(jìn)這種原料共7000千克,那么當(dāng)將其全部售出后,比較“日均獲利最多”和“銷售單價(jià)最高”這兩種銷售方式,哪一種獲總利較多?多多少?
(4)如果該公司常年經(jīng)銷這種原料,那么按題目中的條件,哪一種銷售方式全年獲總利較多?多多少?(一年按350天計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠·優(yōu)化訓(xùn)練·九年級(jí)數(shù)學(xué)下(北京課改版)·銀版 題型:059
如圖(1)所示,矩形ABCD的兩條邊在坐標(biāo)軸上,點(diǎn)D與原點(diǎn)重合,對(duì)角線BD所在直線的函數(shù)關(guān)系式為y=x,AD=8.矩形ABCD沿DB方向以每秒1個(gè)單位長(zhǎng)度運(yùn)動(dòng),同時(shí)點(diǎn)P從點(diǎn)A出發(fā)做勻速運(yùn)動(dòng),沿矩形ABCD的邊經(jīng)過點(diǎn)B到達(dá)點(diǎn)C,用了14秒.
(1)求矩形ABCD的周長(zhǎng).
(2)如圖(2)所示,圖形運(yùn)動(dòng)到第5秒時(shí),求點(diǎn)P的坐標(biāo).
(3)設(shè)矩形運(yùn)動(dòng)的時(shí)間為t,當(dāng)0≤t≤6時(shí),點(diǎn)P所經(jīng)過的路線是一條線段,請(qǐng)求出線段所在直線的函數(shù)關(guān)系式.
(4)當(dāng)點(diǎn)P在線段AB或BC上運(yùn)動(dòng)時(shí),過點(diǎn)P作x軸、y軸的垂線,垂足分別為E、F,則矩形PEOF是否能與矩形ABCD相似(或位似)?若能,求出t的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線上有不同的兩點(diǎn)E和F.
(1)求此拋物線的解析式.
(2)如圖,拋物線與x軸的正半軸和y軸分別交于點(diǎn)A和點(diǎn)B,M為AB的中點(diǎn),∠PMQ=45°,MP交y軸于點(diǎn)C,MQ交x軸于點(diǎn)D.∠PMQ在AB的左側(cè)以M為中心旋轉(zhuǎn),設(shè)AD 的長(zhǎng)為m(m>0),BC的長(zhǎng)為n,求n和m之間的函數(shù)關(guān)系式.
(3)在(2)的條件下,當(dāng)m,n為何值時(shí),∠PMQ的邊過點(diǎn)F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖直線l的解析式為y=-x+4, 它與x軸、y軸分相交于A、B兩點(diǎn),平行于直線l的直線m從原點(diǎn)O出發(fā),沿x軸的正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),它與x軸、y軸分別相交于M、N兩點(diǎn),運(yùn)動(dòng)時(shí)間為t秒(0<t≤4)
。1)求A、B兩點(diǎn)的坐標(biāo);
(2)用含t的代數(shù)式表示△MON的面積S1;
(3)以MN為對(duì)角線作矩形OMPN,記 △MPN和△OAB重合部分的面積為S2;
?當(dāng)2<t≤4時(shí),試探究S2與t之間的函數(shù)關(guān)系; ?在直線m的運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),S2 為△OAB的面積的
?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com