【題目】如圖,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸交于兩點,與雙曲線交于點, 過點軸,且,則以下結(jié)論錯誤的是(

A.

B.當(dāng)時,

C.當(dāng)時,

D.當(dāng)時,的增大而增大,的增大而減小

【答案】B

【解析】

根據(jù)圖象和函數(shù)的性質(zhì)判斷A即可;求出C的坐標(biāo)即可判斷B;根據(jù)圖象和函數(shù)的性質(zhì)判斷C即可;求出F、E的縱坐標(biāo),即可求出EF,再判斷D即可.

A、y1=2x-2,當(dāng)y=0時,x=1,即OB=1,

OB=BD,

OD=2

x=2代入y=2x-2得:y=2,

即點C的坐標(biāo)是(2,2),

C的坐標(biāo)代入雙曲線得:k=4,故本選項不符合題意;

B、根據(jù)圖象可知:當(dāng)時,y1>y2,故本選項符合題意;

C、當(dāng)x=4時,y1=2×4-2=6,,所以EF=6-1=5,故本選項符合題意;

D、從圖象可知:當(dāng)x0時,y1x的增大而增大,y2x的增大而減小,故本選項不符合題意;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:在平面內(nèi),如果一個圖形繞一個定點旋轉(zhuǎn)一定的角度αα≤180°)后能與自身重合,那么就稱這個圖形是旋轉(zhuǎn)對稱圖形,轉(zhuǎn)動的這個角度α稱為這個圖形的一個旋轉(zhuǎn)角.例如:正方形繞著兩條對角線的交點O旋轉(zhuǎn)90°180°后,能與自身重合(如圖1),所以正方形是旋轉(zhuǎn)對稱圖形,且有兩個旋轉(zhuǎn)角.根據(jù)以上規(guī)定,回答問題:

1)下列圖形是旋轉(zhuǎn)對稱圖形,但不是中心對稱圖形的是________;

A.矩形 B.正五邊形 C.菱形 D.正六邊形

2)下列圖形中,是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角是60度的有:________(填序號);

3)下列三個命題:中心對稱圖形是旋轉(zhuǎn)對稱圖形;等腰三角形是旋轉(zhuǎn)對稱圖形;圓是旋轉(zhuǎn)對稱圖形,其中真命題的個數(shù)有( )個;

A0 B1 C2 D3

4)如圖2的旋轉(zhuǎn)對稱圖形由等腰直角三角形和圓構(gòu)成,旋轉(zhuǎn)角有45°90°,135°180°,將圖形補充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,將繞點順時針旋轉(zhuǎn)45°,得到,點關(guān)于直線的對稱點為,連接交直線于點,連接

1)根據(jù)題意補全圖形;

2)判斷的形狀,并證明;

3)連接,用等式表示線段,之間的數(shù)量關(guān)系,并證明.

溫馨提示:在解決第(3)問的過程中,如果你遇到困難,可以參考下面幾種解法的主要思路.

解法1的主要思路:

延長至點,使,連接,可證,再證是等腰直角三角形.

解法2的主要思路:

過點于點,可證是等腰直角三角形,再證

解法3的主要思路:

過點于點,過點于點,設(shè),,用含的式子表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸交于點A3,0),與y軸交于點B,拋物線經(jīng)過A,B

1)求拋物線解析式;

2Em,0)是x軸上一動點,過點E軸于點E,交直線AB于點D,交拋物線于點P,連接PB

①點E在線段OA上運動,若△PBD是等腰三角形時,求點E的坐標(biāo);

②點Ex軸的正半軸上運動,若,請直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社會團體準(zhǔn)備購進甲、乙兩種防護服捐給一線抗疫人員,經(jīng)了解,購進5件甲種防護服和4件乙種防護服需要2萬元,購進10件甲種防護服和3件乙種防護服需要3萬元.

1)甲種防護服和乙種防護服每件各多少元?

2)實際購買時,發(fā)現(xiàn)廠家有兩種優(yōu)惠方案,方案一:購買甲種防護服超過20件時,超過的部分按原價的8折付款,乙種防護服沒有優(yōu)惠;方案二:兩種防護服都按原價的9折付款,該社會團體決定購買件甲種防護服和30件乙種防護服.

①求兩種方案的費用與件數(shù)的函數(shù)解析式;

②請你幫該社會團體決定選擇哪種方案更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示的健身器械為倒蹬機,使用方法為上身不動,腿部向前發(fā)力,雙腿伸直之后,然后再慢慢回收.圖2為示意圖,已知在初始位置,, 在同一直線上,

1)當(dāng)在初始位置時,求點的距離;

2)當(dāng)雙腿伸直后,如圖3,點分別從初始位置運動到點, 假設(shè)三點共線,求此時點上升的豎直高度. ( 結(jié)果精確到個位) (參考數(shù)據(jù):)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點,將點向右平移2個單位得到點

1)求點坐標(biāo);

2)如果一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,且點的橫坐標(biāo)為1

時,求的值;

②當(dāng)時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點Ay軸正半軸上,ACx軸,點B、C的橫坐標(biāo)都是3,且BC2,點DAC上,若反比例函數(shù)yx0)的圖象經(jīng)過點B、D.且AOBC32

1)求點D坐標(biāo);

2)將△AOD沿著OD折疊,設(shè)頂點A的對稱點為A′,試判斷點A′是否恰好落在直線BD上,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點為M(2,-4),且過點A(-1,5),連接AMx軸于點B

(1)求這條拋物線的解析式;

(2)求點B的坐標(biāo);

(3)設(shè)點P(xy)是拋物線在x軸下方、頂點左方一段上的動點,連接PO,過以P為頂角頂點、PO為腰的等腰三角形的另一頂點Cx軸的垂線交直線AM于點D,連結(jié)PD,設(shè)△PCD的面積為S,求Sx之間的函數(shù)關(guān)系式;

(4)在上述動點P(xy)中,是否存在使=2的點?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案