【題目】觀察圖中給出的四個(gè)點(diǎn)陣,s表示每個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù),按照?qǐng)D形中的點(diǎn)的個(gè)數(shù)變化規(guī)律,猜想第10個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s為( ).
A.B.C.D.
【答案】D
【解析】
觀察圖形中點(diǎn)的排列規(guī)律得到第1個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1,第2個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1+4,第3個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1+4×2=9,第4個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1+4×3=13,
…,則第n個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1+4(n-1),然后把n=10代入計(jì)算即可.
解:∵第1個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1,
第2個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1+4,
第3個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1+4×2=9,
第4個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1+4×3=13,
…
∴第10個(gè)點(diǎn)陣中的點(diǎn)的個(gè)數(shù)s=1+4×9=37.
故選擇:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過(guò)上一點(diǎn)E作EG∥AC交CD的延長(zhǎng)線于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長(zhǎng)AB交GE的延長(zhǎng)線于點(diǎn)M,若tanG=,AH=3,求EM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)D為BC的中點(diǎn),且AB=10cm,BC=4cm
(1)圖中共有 條線段.
(2)求AD的長(zhǎng).
(3)若點(diǎn)E在線段AB上,且AE=3CE,直接寫(xiě)出BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點(diǎn)D是線段AB上的一點(diǎn),連接CD.過(guò)點(diǎn)B作BG⊥CD,分別交CD、CA于點(diǎn)E、F,與過(guò)點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF,給出以下三個(gè)結(jié)論:
①;
②若點(diǎn)D是AB的中點(diǎn),則AF=AB;
③若,則S△ABC=6S△BDF;其中正確的結(jié)論的序號(hào)是( 。
A. ①②③ B. ①③ C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)“中國(guó)夢(mèng)”關(guān)系每個(gè)人的幸福生活,為展現(xiàn)巴中人追夢(mèng)的風(fēng)采,我市某中學(xué)舉行“中國(guó)夢(mèng)我的夢(mèng)”的演講比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)的成績(jī)分為A,B,C,D四個(gè)等級(jí),并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題.
(1)參加比賽的學(xué)生人數(shù)共有 名,在扇形統(tǒng)計(jì)圖中,表示“D等級(jí)”的扇形的圓心角為 度,圖中m的值為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)組委會(huì)決定從本次比賽中獲得A等級(jí)的學(xué)生中,選出2名去參加市中學(xué)生演講比賽,已知A等級(jí)中男生有1名,請(qǐng)用“列表”或“畫(huà)樹(shù)狀圖”的方法求出所選2名學(xué)生中恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在菱形ABCD中,∠ADC=60°,點(diǎn)H為CD上任意一點(diǎn)(不與C、D重合),過(guò)點(diǎn)H作CD的垂線,交BD于點(diǎn)E,連接AE.
(1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是 ;
(2)如圖2,將△DHE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E、H、C在一條直線上時(shí),求證:AE+EH=CH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)利用求根公式計(jì)算,結(jié)合①②③你能得出什么猜想?
①方程x2+2x+1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________.
②方程x2-3x-1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________.
③方程3x2+4x-7=0的根為x1=_______,x2=________,x1+x2=________,x1·x2=________.
(2)利用求根公式計(jì)算:一元二次方程ax2+bx+c=0(a≠0,且b2-4ac≥0)的兩根為x1=________,x2=________,x1+x2=________,x1·x2=________.
(3)利用上面的結(jié)論解決下面的問(wèn)題:
設(shè)x1、x2是方程2x2+3x-1=0的兩個(gè)根,根據(jù)上面的結(jié)論,求下列各式的值:
①; ②.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:如圖①,數(shù)軸上線段的長(zhǎng)度可以用線段端點(diǎn)表示的數(shù)進(jìn)行減法運(yùn)算得到,例如,線段AB=0﹣(﹣1)=1:線段:BC=2﹣0=2;線段AC=2﹣(﹣1)=3(大的數(shù)減去小的數(shù)).
(1)數(shù)軸上點(diǎn)A、B表示的數(shù)分別是﹣3和2,則AB= ;
(2)數(shù)軸上點(diǎn)M表示的數(shù)是﹣1,線段MN的長(zhǎng)為2,則點(diǎn)N表示的數(shù)是 ;
(3)如圖②,數(shù)軸上點(diǎn)A、B表示的數(shù)分別是﹣4和6,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)多少秒時(shí)BP=4.并求此時(shí)點(diǎn)P表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
(1)求證:AM=AD+MC.
(2)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,試判斷AM=AD+MC是否成立?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說(shuō)明理由;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com