【題目】為滿足即將到來的春節(jié)市場需求,某超市購進(jìn)一種品牌的食品,每盒進(jìn)價為30元,根據(jù)往年的銷售經(jīng)驗發(fā)現(xiàn):當(dāng)售價定為每盒50元時,每天可賣出100盒,每降價1元,每天可多賣出10盒,超市規(guī)定售價不低于40元/盒,不高于50元/盒.
(1)求每天的銷售利潤W(元)與每盒降價x(元)之間的函數(shù)關(guān)系式(注明自變量的取值范圍);
(2)當(dāng)每盒售價為多少元時,每天的銷售利潤最大?
(3)若要使每天的銷售利潤不低于2090元,那么每盒的售價應(yīng)定在什么范圍?
【答案】(1);(2)當(dāng)每盒售價為45元時,每天的銷售利潤最大;(3)每盒的售價不高于49元,不低于41元.
【解析】
(1)根據(jù)總利潤=每件商品的利潤×商品數(shù)量即可求出每天的銷售利潤W(元)與每盒降價x(元)之間的函數(shù)關(guān)系式;
(2)配方成頂點式,利用二次函數(shù)的性質(zhì)即可解答本題;
(3)根據(jù)題意,令利潤等于2090,然后解方程求出x的值,根據(jù)函數(shù)的性質(zhì),即可得出結(jié)論.
(1)依題意得:
(2)
∵,
∴當(dāng)時,,
∴當(dāng)每盒售價為45元時,每天的銷售利潤最大.
(3)依題意得:
解得:x1 = 1,x2 = 9.
根據(jù)函數(shù)圖象的性質(zhì)可知,當(dāng)時,.
∴每盒的售價不不低于41元,高于49元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于E,交AB于點D,連接AE,∠E=30°,AC=5.
(1)求CE的長;
(2)求S△ADC:S△ACE的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形中,厘米,厘米().動點同時從點出發(fā),分別沿,運動,速度是厘米/秒.過作直線垂直于,分別交,于.當(dāng)點到達(dá)終點時,點也隨之停止運動.設(shè)運動時間為秒.
(1)若厘米,秒,求PM的長度;
(2)若厘米,求出某個時間,使⊿PNB∽⊿PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=2x2的圖象如圖所示,坐標(biāo)原點O,點B1,B2,B3在y軸的正半軸上,點A1,A2,A3在二次函數(shù)y=2x2位于第一象限的圖象上,若△A1OB1,△A2B1B2,△A3B2B3都為等腰直角三角形,且點A1,A2,A3均為直角頂點,則點A3的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知點O,A,B均為網(wǎng)格線的交點.
(1)在給定的網(wǎng)格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應(yīng)點分別為).畫出線段;
(2)將線段繞點逆時針旋轉(zhuǎn)90°得到線段.畫出線段;
(3)以為頂點的四邊形的面積是 個平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=5,AC=3,點P為邊AB上一動點(且點P不與點A,B重合),PE⊥BC于E,PF⊥AC于F,點M為EF中點,則PM的最小值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A′B′C,M是BC的中點,P是A′B′的中點,連接PM,若BC=2,∠BAC=30°,則線段PM的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)校門前有座山,山上有一電線桿PQ,他很想知道電線桿PQ 的高度.于是,有一天,小明和他的同學(xué)小亮帶著側(cè)傾器和皮尺來到山腳下進(jìn)行測量.測量方案如下:如圖,首先,小明站在地面上的點A處,測得電線桿頂端點P的仰角是45;然后小明向前走6米到達(dá)點B處,測得電線桿頂端點P和電線桿底端點Q的仰角分別是60和30,設(shè)小明的眼睛到地面的距離為1.6米.請根據(jù)以上測量的數(shù)據(jù),計算電線桿PQ的高度(結(jié)果精確到1米)參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com