【題目】如圖1,在中,,,過點(diǎn)的直線垂直于線段所在的直線.設(shè)點(diǎn),關(guān)于直線的對稱點(diǎn)分別為點(diǎn),
(1)在圖1中畫出關(guān)于直線對稱的三角形.
(2)若,求的度數(shù).(用表示)
(3)若點(diǎn)關(guān)于直線的對稱點(diǎn)為,連接,.請寫出、之間的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.
【答案】(1)見解析;(2);(3),,所成銳角為60°,見解析
【解析】
(1)根據(jù)軸對稱的性質(zhì)畫圖即可;
(2)根據(jù)軸對稱得到,再根據(jù)外角關(guān)系推導(dǎo)出;
(3)先根據(jù)軸對稱求出∠3=∠4=∠5,由,證得為等邊三角形得出,根據(jù),證得AP=AM得到為等邊三角形,由此得到,,即PA與PM所成角為60°.
(1)如圖:
(2)解:∵,關(guān)于直線對稱,
∴,,
∴,
∴,
又∵在中,,,
∴,
即;
(3),,所成銳角為60°
∵,關(guān)于直線對稱,
∴,,
∴,
∵
∴
在中,,
又∵,
∴.
∵點(diǎn)M、關(guān)于對稱,
∴,,
∴,
∴∠4=,
∵,
∴,
∴,
∵,,
∴為等邊三角形,
∴,
又∵由(2)得,
,
∴,
∴為等邊三角形,
∴,,
即PA與PM所成角為60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于C,D兩點(diǎn),與x,y軸交于B,A兩點(diǎn),且tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)如圖,⊙O的直徑AC與弦BD相交于點(diǎn)F,點(diǎn)E是DB延長線上一點(diǎn),
∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點(diǎn)B是EF的中點(diǎn),求證:以A、B、C為頂點(diǎn)的三角形與△AEF相似;
(3)在(2)的條件下,已知AF=4,CF=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①abc>0;②2a+b=0;③若m為任意實(shí)數(shù),則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中,正確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),拋物線與x軸交于點(diǎn)A,C(點(diǎn)A在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)B,頂點(diǎn)為D.點(diǎn)Q為線段BC的三等分點(diǎn)(靠近點(diǎn)C).
(1)點(diǎn)M為拋物線對稱軸上一點(diǎn),點(diǎn)E為對稱軸右側(cè)拋物線上的點(diǎn)且位于第一象限,當(dāng)的周長最小時,求面積的最大值;
(2)在(1)的條件下,當(dāng)的面積最大時,過點(diǎn)E作軸,垂足為N,將線段CN繞點(diǎn)C順時針旋轉(zhuǎn)90°得到點(diǎn)N,再將點(diǎn)N向上平移個單位長度.得到點(diǎn)P,點(diǎn)G在拋物線的對稱軸上,請問在平面直角坐標(biāo)系內(nèi)是否存在一點(diǎn)H,使點(diǎn)D,P,G,H構(gòu)成菱形.若存在,請直接寫出點(diǎn)H的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(是常數(shù),)圖象的對稱軸是直線,其圖象的一部分如圖所示,下列說法中①;②;③當(dāng)時,;④;⑤.正確的結(jié)論有( )
A.①②④B.②③④C.①③⑤D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京地鐵票價計(jì)費(fèi)標(biāo)準(zhǔn)如下表所示:
乘車距離(公里) | |||||
票價(元) | 3 | 4 | 5 | 6 | 每增加1元可乘坐20公里 |
另外,使用市政交通一卡通,每個自然月每張卡片支出累計(jì)滿100元后,超出部分打8折;滿150元后,超出部分打5折;支出累計(jì)達(dá)400元后,不再打折.小紅媽媽上班時,需要乘坐地鐵15公里到達(dá)公司,每天上下班共乘坐兩次.如果每次乘坐地鐵都使用市政交通一卡通,那么每月第21次乘坐地鐵上下班時,她刷卡支出的費(fèi)用( 。
A.2.5元B.3元C.4元D.5元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com