【題目】海南建省30年來,各項(xiàng)事業(yè)取得令人矚目的成就,以2016年為例,全省社會(huì)固定資產(chǎn)總投資約3730億元,其中包括中央項(xiàng)目、省屬項(xiàng)目、地(市)屬項(xiàng)目、縣(市)屬項(xiàng)目和其他項(xiàng)目.圖1、圖2分別是這五個(gè)項(xiàng)目的投資額不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)完成下列問題:

(1)在圖1中,先計(jì)算地(市)屬項(xiàng)目投資額為多少億元,然后將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)在圖2中,縣(市)屬項(xiàng)目部分所占百分比為m%、對(duì)應(yīng)的圓心角為β,求m的值,β等于多少度(m、β均取整數(shù)).

【答案】(1)地(市)屬項(xiàng)目投資額為830億元;補(bǔ)全圖形見解析;(2)m=18,對(duì)應(yīng)的圓心角為65°.

【解析】

此題涉及的知識(shí)點(diǎn)是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合應(yīng)用,先根據(jù)條形統(tǒng)計(jì)圖計(jì)算出地屬項(xiàng)目,再根據(jù)兩個(gè)統(tǒng)計(jì)圖計(jì)算m和β。

(1)地(市)屬項(xiàng)目投資額為3730﹣(200+530+670+1500)=830(億元),

補(bǔ)全圖形如下:

(2)縣(市)屬項(xiàng)目部分所占百分比為m%=×100%≈18%,即m=18,

對(duì)應(yīng)的圓心角為β=360°×≈65°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州漆器名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是菱形邊上的一動(dòng)點(diǎn),它從點(diǎn)出發(fā)沿在路徑勻速運(yùn)動(dòng)到點(diǎn),設(shè)的面積為點(diǎn)的運(yùn)動(dòng)時(shí)間為,則關(guān)于的函數(shù)圖象大致為  

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q兩點(diǎn)分別從A,B同時(shí)出發(fā),點(diǎn)P沿折線AB﹣BC運(yùn)動(dòng),在AB上的速度是2cm/s,在BC上的速度是2cm/s;點(diǎn)Q在BD上以2cm/s的速度向終點(diǎn)D運(yùn)動(dòng),過點(diǎn)P作PN⊥AD,垂足為點(diǎn)N.連接PQ,以PQ,PN為鄰邊作PQMN.設(shè)運(yùn)動(dòng)的時(shí)間為x(s),PQMN與矩形ABCD重疊部分的圖形面積為y(cm2

(1)當(dāng)PQ⊥AB時(shí),x等于多少;

(2)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;

(3)直線AM將矩形ABCD的面積分成1:3兩部分時(shí),直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四張背面完全相同的紙牌的正面分別畫有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻后摸出一張,不放回,再摸出一張

(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用AB、CD表示);

(2)求摸出的兩張紙牌牌面上所畫幾何圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=DAC上一點(diǎn),DEAB于點(diǎn)E,AC=12,BC=5

1的值;

2當(dāng)時(shí),求的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在Rt△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),BE⊥CD,垂足為點(diǎn)E.已知AC=15,cosA=

(1)求線段CD的長(zhǎng);

(2)求sin∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的表達(dá)式為,線段AB的兩個(gè)端點(diǎn)分別為A(1,2),B(3,2)

(1)若拋物線經(jīng)過原點(diǎn),求出的值

(2)求拋物線頂點(diǎn)C的坐標(biāo)(用含有m的代數(shù)式表示);

(3)若拋物線與線段AB恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,⊙O的半徑,弦AB,CD交于點(diǎn)E,C的中點(diǎn),過D點(diǎn)的直線交AB延長(zhǎng)線與點(diǎn)F,且DF=EF

1)如圖①,試判斷DF與⊙O的位置關(guān)系,并說明理由;

2)如圖②,連接AC,若ACDF,BE=AE,求CE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案