如圖(1)正方形ABCD和正方形AEFG,邊AE在邊AB上,AB=12,AE=6
2
.將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°≤α≤45°)
(1)如圖(2)正方形AEFG旋轉(zhuǎn)到此位置,求證:BE=DG;
(2)在旋轉(zhuǎn)的過程中,當(dāng)∠BEA=120°時(shí),試求BE的長;
(3)BE的延長線交直線DG于點(diǎn)Q,當(dāng)正方形AEFG由圖(1)繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,請(qǐng)直接寫出旋轉(zhuǎn)過程中點(diǎn)Q運(yùn)動(dòng)的路線長;
(4)在旋轉(zhuǎn)的過程中,是否存在某時(shí)刻BF=BC?若存在,試求出DQ的長;若不存在,請(qǐng)說明理由.(點(diǎn)Q即(3)中的點(diǎn))
分析:(1)根據(jù)正方形的性質(zhì)可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“邊角邊”證明△ABE和△ADG全等,根據(jù)全等三角形對(duì)應(yīng)邊相等證明即可;
(2)過點(diǎn)A作AH⊥BE交BE的延長線于H,根據(jù)鄰補(bǔ)角的定義求出∠AEH=60°,解直角三角形求出AH、EH,再利用勾股定理列式求出BH,然后根據(jù)BE=BH-EH代入數(shù)據(jù)計(jì)算即可得解;
(3)根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ABE=∠ADG,然后求出∠BQD=∠BAD=90°,再根據(jù)直徑所對(duì)的圓周角是直角判斷出點(diǎn)Q的軌跡為以BD為直徑的弧AD,然后根據(jù)弧長公式列式計(jì)算即可得解;
(4)利用勾股定理列式求出AF,從而得到AB=AF=BF,判斷出△ABF是等邊三角形,再根據(jù)到線段兩端點(diǎn)距離相等的點(diǎn)在線段垂直平分線上判斷出直線BE是AF的垂直平分線,根據(jù)等邊三角形的性質(zhì)可得∠ABQ=
1
2
∠BAF=30°,設(shè)BQ與AD相交于H,解直角三角形求出AH,再求出DH,然后在Rt△DHQ中,利用∠ADG的余弦列式求解即可.
解答:(1)證明:在正方形ABCD和正方形AEFG中,
AB=AD,AE=AG,∠BAD=∠EAG=90°,
∵∠BAE+∠EAD=∠BAD=90°,
∠DAG+∠EAD=∠BAD=90°,
∴∠BAE=∠DAG,
在△ABE和△ADG中,
AB=AD
∠BAE=∠DAG
AE=AG
,
∴△ABE≌△ADG(SAS),
∴BE=DG;

(2)如圖,過點(diǎn)A作AH⊥BE交BE的延長線于H,
∵∠BEA=120°,
∴∠AEH=180°-120°=60°,
∵AE=6
2
,
∴AH=AE•sin60°=6
2
×
3
2
=3
6
,
EH=AE•cos60°=6
2
×
1
2
=3
2

在Rt△ABH中,BH=
AB2-AH2
=
122-(3
6
)
2
=
90
=3
10
,
∴BE=BH-EH=3
10
-3
2
;

(3)∵△ABE≌△ADG,
∴∠ABE=∠ADG,
∴∠BQD=∠BAD=90°,
∴點(diǎn)Q的運(yùn)動(dòng)軌跡為以BD為直徑的
AD
,所對(duì)的圓心角是90°,
∵AB=12,
∴BD=
2
AB=12
2
,
∴旋轉(zhuǎn)過程中點(diǎn)Q運(yùn)動(dòng)的路線長=
90•π•12
2
360
=3
2
π;

(4)由勾股定理得,AF=
2
AE=
2
×6
2
=12,
∵BF=BC=12,
∴AB=AF=BF=12,
∴△ABF是等邊三角形,
又∵AE=EF,
∴直線BE是AF的垂直平分線,
∴∠ABQ=
1
2
∠BAF=30°,
設(shè)BQ與AD相交于H,
則AH=AB•tan30°=12×
3
3
=4
3
,
∴DH=AD-AH=12-4
3
,
在Rt△DQH中,DQ=DH•cos30°=(12-4
3
)×
3
2
=6
3
-6.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形的判定與性質(zhì),綜合題,難點(diǎn)較大,(2)作輔助線構(gòu)造出有一個(gè)角是60°的直角三角形是解題的關(guān)鍵,(3)難點(diǎn)在于判斷出路線是以BD為直徑的弧長的一部分,(4)利用到線段兩端點(diǎn)距離相等的點(diǎn)在線段垂直平分線上判斷出直線BE是AF的垂直平分線是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點(diǎn)N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖所示的正方形網(wǎng)格中,已知線段AB,A、B均為格點(diǎn).
(1)請(qǐng)?jiān)诰W(wǎng)格中畫出一個(gè)以AB為底邊的等腰三角形ABC,且點(diǎn)C也為格點(diǎn);
(2)作出△ABC的外接圓(尺規(guī)作圖,保留作圖痕跡,不寫作法與證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•市南區(qū)模擬)如圖,已知正方形ABCD的邊長與Rt△PQR的直角邊PQ的長均為4cm,QR=8cm,AB與QR在同一直線l上,開始時(shí)點(diǎn)Q與點(diǎn)A重合,讓△PQR以1cm/s的速度在直線l上運(yùn)動(dòng),同時(shí)M點(diǎn)從點(diǎn)Q出發(fā)以1cm/s沿QP運(yùn)動(dòng),直至點(diǎn)Q與點(diǎn)B重合時(shí),都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s),四邊形PMBN的面積為S(cm2).
(1)當(dāng)t=1s時(shí),求S的值;
(2)求S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍(不考慮端點(diǎn));
(3)是否存在某一時(shí)刻t,使得四邊形PMBN的面積S=
14
S△PQR
?若存在,求出此時(shí)t的值;若不存在,說明理由;
(4)是否存在某一時(shí)刻t,使得四邊形PMBN為平行四邊形?若存在,求出此時(shí)t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•惠山區(qū)一模)閱讀與證明:
如圖,已知正方形ABCD中,E、F分別是CD、BC上的點(diǎn),且∠EAF=45°,

求證:BF+DE=EF.
分析:證明一條線段等于另兩條線段的和,常用“截長法”或“補(bǔ)短法”,將線段BF、DE放在同一直線上,構(gòu)造出一條與BF+DE相等的線段.如圖1延長ED至點(diǎn)F′,使DF′=BF,連接A F′,易證△ABF≌△ADF′,進(jìn)一步證明△AEF≌△AEF′,即可得結(jié)論.
(1)請(qǐng)你將下面的證明過程補(bǔ)充完整.
證明:延長ED至F′,使DF′=BF,
∵四邊形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
應(yīng)用與拓展:如圖建立平面直角坐標(biāo)系,使頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,邊OB、OD分別在x軸、y軸的正半軸上.
(2)設(shè)正方形邊長OB為30,當(dāng)E為CD中點(diǎn)時(shí),試問F為BC的幾等分點(diǎn)?并求此時(shí)F點(diǎn)的坐標(biāo);
(3)設(shè)正方形邊長OB為30,當(dāng)EF最短時(shí),直接寫出直線EF的解析式:
y=-x+30
2
y=-x+30
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,O為正方形ABCD的對(duì)角線AC與BD的交點(diǎn),M、N兩點(diǎn)分別在BC與AB上,且OM⊥ON.
(1)試說明OM=ON;
(2)試判斷CN與DM的關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案